Filteri
close
Tip rezultata
Svi rezultati uključeni
keyboard_arrow_down
Kategorija
Sve kategorije
keyboard_arrow_down
Od
RSD
Do
RSD
Sortiraj po
keyboard_arrow_down
Objavljeno u proteklih
keyboard_arrow_down
Sajtovi uključeni u pretragu
Svi sajtovi uključeni
keyboard_arrow_down

Pratite promene cene putem maila

  • Da bi dobijali obaveštenja o promeni cene potrebno je da kliknete Prati oglas dugme koje se nalazi na dnu svakog oglasa i unesete Vašu mail adresu.
151-175 od 192 rezultata

Broj oglasa

Prikaz

format_list_bulleted
view_stream
151-175 od 192 rezultata

Prikaz

format_list_bulleted
view_stream

Režim promene aktivan!

Upravo ste u režimu promene sačuvane pretrage za frazu .
Možete da promenite frazu ili filtere i sačuvate trenutno stanje

Aktivni filteri

  • Tag

    Prirodne nauke
  • Tag

    Lektire

Cena knjige bitno smajena Knjga sadrži sledeće : Ekperimentalna fizika knjiga I Beograd 1947 god .Mehanika i nauka o toploti 222 str Knjiga II izdanje 1940 B eograd Geometriska optika i elektricitet 304 str . Rešeni problemi iz fizike izdanj 1940 Beograd 108 str Povez: : tvrd Format knjige : : 24 cm x 17 cm Stanje : oštećene korice i hrbat , žute mrljice na stranama , veli broj rdova podvućen

Prikaži sve...
299RSD
forward
forward
Detaljnije

U dobrom stanju Rad Jugoslavenske akademije znanosti i umjetnosti, tom364 Jugoslavenska akademija znanosti i umjetnosti, 1972 KNJIGA 364 B. Rode and N. Kralj-Klobučar: Histochcmical study of hydrolytic enzymes activities in the forestomach epilhelium of ruminants 7. Varićak: Die Aklivitat einiger HydroIascn in den Thyreocylen von Sejliorhinus canicula L. H. Camulin-Brida: Contribution aux eludcs da biococnoses benthiqua de l`Adriatique meridionale M Zobundiija: Some histological observations on the bovine allantoic epithelium A. Kolar: Poiychaeta obraitajnih životnih zajednica na različitim podlogama J. Krmpolić-Nemanić: Funkcionalna građa ljudske šake A. Hraste, K. Babić, M. Zobundiija i Z. Varićak: Prilog poznavanju utjecaja dobi na neke hidrolitike enzime u svinjskoj jetri K. Babić, A. Hraste, M. Zobundiija and Z. Varićak: A contribution to the knowledge of the effect of age on tome oaidative enzymes in the liver of pigs A. Frank, 7. Varićak und B. Rode: Die Aktlvitit einiger hydrolitischen Enzyme im Dunndarm der Rinderfetu* Lj. Pavićević: Triticum tnonococcum L. Lj. Pavićević: Triticum turgidum L. itp. mediterraneum Flaksb. var. pseudomirabilc Perciv. u srednjem Polimlju 5. Camulin: Mydriatic activity of Amani/a muscariu eztracts 7. Varićak und A. Frank: Die Aktivitot einiger Enzyme in der Parathyreoidea und im Paraganglion caroticum des Hubnes M. Malen Rasprostranjenost hladnodobnih životinja u gornjem pleistocenu jugoistočne Evrope

Prikaži sve...
590RSD
forward
forward
Detaljnije

Demidovič i dr. - ZADACI I REŠENI PRIMERI IZ VIŠE MATEMATIKE S PRIMENOM NA TEHNIČKE NAUKE Prevod sa ruskog jezika Autori: G. S. Baranenkov, B. P. Demidovič, V. A. Jefimenko, S. M. Kogan, G. L. Lung, E. F. Poršneva, E. P. Syčeva, S. V Frolov, R. J. Šostak, A. R. Janpoljskij Izdavač: Tehnička knjiga, Zagreb Godina izdanja: 1971 Broj stranica: 487 Povez: mek Knjiga je veoma dobro očuvana što se tiče unutrašnjosti, gotovo besprekorno; korice nešto slabije - stanje možete videti na fotografijama. s

Prikaži sve...
420RSD
forward
forward
Detaljnije

PRINC BROJEVA / priča o čuvenom matematičaru - geniju ! PRINC BROJEVA Srinivasa Ramanujan PRINC BROJEVA SRINIVASA RAMANUJAN KOMPJUTER BIBLIOTEKA B e o g r a d 2 O 1O KOMPJUTER BIBLIOTEKA Biografija čuvenog matematičkog genija iz Indije Detinjstvo i mladost Ramanujanovo neuspešno studiranje Zaposlenje Istraživanja u matematici Početak pisanja naučnih radova Obraćanje engleskim matematičarima Ćivot u Engleskoj Ličnost i duhovni život Akademski napredak Ramanujanova kobna bolest Ramanujanovi istraživački opus Ramanujanovi matematički biseri Ramanujanove zagonetne sveske Gledišta drugih matematičara o Ramanujanu ............................................................ Indeks imena 94 slike Broš Latinica 144 stranica Knjiga je NOVA..... --------------------------- . ➡️ ➡️ L3

Prikaži sve...
660RSD
forward
forward
Detaljnije

Гелбаум Б., Олмстед Дж. Контрпримеры в анализе. М. Мир 1967г. 252с. твердый переплет, обычный формат. В настоящей книге рассматриваются многочисленные примеры из математического анализа и теории функций действительного переменного, имеющие целью обратить внимание на ряд опасных вопросов, на которые неопытный читатель может дать неправильные ответы. Такие контрпримеры систематически подобраны авторами, и поэтому книга может служить очень хорошим дополнением к обычным учебным курсам. Часто авторы не дают подробных доказательств, ограничиваясь лишь основными идеями построения соответствующих примеров. Это позволит читателю активно включиться в изучение материала. Книга будет полезна студентам университетов и институтов, изучающим математический анализ и теорию функций.

Prikaži sve...
1,100RSD
forward
forward
Detaljnije

TOMASOVA MATEMATIČKA BIBLIJA. VEŠTINA RAČUNANjA, jedanaesto izdanje, zasnovan na originalnom radu Džorža B. Tomasa mlađeg sa Instituta za tehnologiju u Masačusetsu, Građevinska knjiga, Beograd, 2007. Originalni tvrdi kartonski povez. Odlična očuvanost korice, poveza i listova, knjiga je nekorišćena. Jezik srpski, latinica, različita paginacija u okviru jedne knjige (ukupno 1486 str.). Knjiga je veoma obimna, masivna i teška, bogato ilustrovana. Knjigu priredili: MORIS D. VEIR (Katedra za poslediplomske studije u Školi za brodogradnju), DžOEL HAS (Kalifornijski univerzitet, Dejvis), FRENK R. ĐORDANO (Katedra za poslediplomske studije u Školi za brodogradnju). Prevod: Ibrahim Begović. Predgovor: Stana Šehalić. Štampa: „AMB Grafika“ Novi Sad. Originalni naslov: „THOMAS` CALCULUS“.

Prikaži sve...
7,500RSD
forward
forward
Detaljnije

Odlično očuvana knjiga B. P. Demidovič ZADACI I RIJEŠENI PRIMJERI IZ VIŠE MATEMATIKE S PRIMJENOM NA TEHNIČKE NAUKE (prevod sa ruskog jezika), treće izdanje, `Tehnička knjiga`, Zagreb 1975. godine, format 24 cm, meki povez, ilustrovano, strana 487. POGLAVLJA u SADRŽAJU knjige: I UVOD U ANALZU II DERIVIRANJE FUNKCIJA III EKSTREMI FUNKCIJA I PRIMJENE DERIVACIJA U GEOMETRIJI IV NEODREĐENI INTEGRAL V ODREĐENI INTEGRAL VI FUNKCIJE VIŠE VARIJABLI VII VIŠESTRUKI I KRIVULJNI INTEGRALI VIII REDOVI IX DIFERENCIJALNE JEDNADŽBE X PRIBLIŽNI RAČUN Prilozi: I Grčki alfabet II Neke konstante III Recipročne vrijednosti, potencije, korijeni, logaritmi IV Trigonometrijske funkcije V Eksponencijalne, hiperbolne i trigonometrijske funkcije VI Neke krivulje STRUČNEKNJIGE OTKUP/ZAMENA stručnih knjiga

Prikaži sve...
690RSD
forward
forward
Detaljnije

U dobrom stanju Rad JAZU U ovoj knjizi Rada objavili su radove ovi autori: I. Albu, B. Banović, B. Borac, U. Bego, N, Carević, K, Cermak, R. Gcorgia, T. Giurgiu. J. Hančcvić, M. Hudec, P. Keros, S, Kovačić, J. Krmpotić-Nemanić, B. Kummer, A. M. Lutfi, V, Mandič, S. Manev, O. Muftić, V. Nikolić, M. Pećina, V. Pop, F. W. Ral like, V. Rudei, I. Ruszkoicski, M. Sakka, Lj. Serafimov, E. Stoica, N. Sipui, J. Vincze, J. Zergollern, M. SADRŽAJ Govor predsjednika Jugoslavenske akademije znanosti i umjetnosti akademika Grge Novaka ... 3 The Speech of Academician Grga Novak President of ithe Yugoslav Academy of Sciences and Arts ....4 BENNO KUMMER Bone Remodeling as a Function of Mechanical Stress .... 5 Pregradnja kosti kaio funkcija mehaničkih naprezanja ... 18 Knocbenumbau ads Funktion der mechanischen Beanspruchung .... 19 L ALBU, R. GEORGIA, E. STOICA, J. VINCZE, T. GIURGIU, V. POP On t`he Gorrelation between the Havers Ghannels Diiaimeter of the Long Human Bones in the Shaft Campactia and the bone Architecture .... 21 O korelaciji između promjera haverzovi`h kanala dijafize dugih kostiju i koštane arhitekture ....35 JELENA KRMPOTIĆ-NEMANIĆ Current Approach to the Investigaition on Mechanical Faotors in the Con- figuration of the Base of the Skull 37 Suvremeni pristup istraživanju mehaničkih faktora u formiranju baze lubanje 41 MICHELE SAKKA Influence des Facteurs Meeaniques sur l’Adaptation Fonotionnelle de l’Ecaille Occipitale (Squama occipitalis) ohez l’Homme et les Antbro- poides .... 43 Utjecaj mehaničkih čimbenika na funkcionalnu adaptaciju ljuske zatiljne kosti u čovjeka i antropoidnih majmuna 48 SRBOLJUB ŽIVANOVIĆ A Note on Artificial Cranial Deformation in Rikuyu (East African Bantu) Women .... 49 Opaska o umjetnim deformitetima lubanje u Kikuyu (istočnoafričkih Bantu) žena .... 54 r KRSO&, J. KRMFOTIĆ-NEMANIĆ, V. MANDIĆ, V. RUBEŽ, B. BARAC Certain Morpbcdogkal Changes in the Spine Duc to Biomechanical Factors Neke morfoloSlic promjene kralježnice uvjetovane biomehaničkim čini-ocem* ..........59 J. ZERGOLLERN, O. Mi’mć, P. KEROS Change of Farm in Scolrotk Spine Due to Increased Stiffness Falio wing Some Fuuting Operations . 1i|| Promjerea oblika skoKotiČne kralježnice uslijed povećanja krutosti pri nekim fiksacionim operacijama ....68 F. W. RATHKE Zur Tedutik der aktiv-passiven Korrektur von juvenilen Kyphosen (M. Schcuermann) ............ 69 Tehnika aktivne i pasivne korekture juvenilnih kifoza (M. Schcurmann) . 78 A. M. Ltrm The Mechanics of Longitudinal Growth of Long Boneš .... . .. 79 Mehanizam uzdužnog rasta dugih kostiju ... . 89 UROŠ BEGO. Ivo RUSZKOWSKI, MLADEN ZOBUNDŽIJA, KRUNOSLAV ČERMAK Ezperimental Investigation of the Fuoctional Reaction of Terminal Femoral Parts In Dogs ... ... 91 Eksperimentalna istraživanja funkcionalne neaktivnosti okrajaka bedrene kosti u psa ....98 MLADEN ZOBUNDŽIJA. UROŠ BEGO, KRUNOSLAV ČERMAK The Effect of the Myotomy of the Pelvico-Femoral Muscles on the Prozirnal Part of Femur in Chickens . . . . . . . 99 Utjecaj miotomije zdjelićno-bedrenih mišića na proksimalni okrajak bedrene kosti pilića ....104 Ivo RUSZKOVTSKI, OSMAK MUFTIĆ, MARKO PEĆINA Analysis of Position of the Femoral Head Centre in Relation to Epiphy- seal Cartilage in Different Periode of Growth 105 Analiza odnosa položaja središta glave bedrene kosti prema epifiznoj hrskavici u raznim razdobljima rasta 112 VELJKO MA.VDIĆ, ŠAŠA MANEV, NIKOLA SIPUŠ Changes in the BeJow Staup Growth Knee in Children 113 Promjene rasta amputacionog bataljka potkoljenice u djece uzrokovane mehaničkim čimbenicima 122 V. NIKOLIĆ, B. BANOVIĆ, J. HANĆEVIĆ, O. MUFTIĆ Spectral Vibration Analysis of Certain Structurcs of the Proximal Por- tion of the Tbigh Bone 123 Spektralna analiza vibracija nekih struktura proksimalnog dijela bedrene kosti . . ... . . 136 Ivo RUSZKOWSKI, OSMAN MUFTIĆ, STANKA KOVAČIĆ On Torsional Stififncss of the Femoral Neck 137 O ■torzionoj krutosti vrata femura 143 JANKO HANČEVIĆ, MLADEN HUDEC, VASILIJE NIKOLIĆ Ccntain Obscrvations on the Manner and Dynamics of Loco Typico Ra- dius F-raoturcs 145 Neka zapažanja 0 načinu i dinamici prijeloma palčane kosti u području tipične zone 152 NIKO CAREVIĆ Our Clindcal Expcriences About Functional Adaptation in the Cases of Femoral Neck Fractures 153 Naša klinička iskustva 0 funkcionalnoj adaptaciji prijeloma vrata bedrene kosti ... 166 OSMAN MUFTIĆ, IVO RUSZKOWSKI, STANKA KOVAĆIĆ Non-Isotropic Charactcristics of Bones in the Anaiysis of Etiopathogene- s)is of Bone Apposition of the Femoral Neck in Coxarthrosis 167 Neizotnopna svojstva koštanog materijala u analizi patogeneze koštane apozicije na vratu femura kod koksartroze ...177 Lj. SERAFIMOV Eccentricity in CDH and Its Relation to the Antero-Lateral Deformity of the Upper Part of the Fcmur ...179 Ekscentricitct kod kongenijalne displazijc kuka i njegov utjecaj na an- tcro-lateralnu deformaciju proksimalnog dijela femura ...187 Lj. SERAFIMOV Biomechanical Effects of Innominate Osteotomy in the Growth of the U-pper Part of the Femur 189 Biomehanički utjecaji osteotomije inom inate na rast proksimalnog dijela femura 198

Prikaži sve...
990RSD
forward
forward
Detaljnije

Naslov: Sistem radijacione kontrole u biotehnologiji Autor(i): Dr Radosav Mitrović, dr Ranko Kljajić i dr Branislav Petrović Izdavač: Naučni institut za veterinarstvo Mesto: Novi Sad Godina: 1996. U mirnodopskim prilikama procena nivoa radioaktivnosti i radijacionog rizika u pojedinim delovima životne sredine i lanca hrane zahteva stručan kadar, odgovoran i savestan rad, posedovanje specifične nuklearne instrumentacije i precizno definisanu zakonsku i podzakonsku regulativu. U akutnoj radijacionoj situaciji, pored prethodno navedenog, neophodan je brz i efikasan rad, brza procena razvoja radijacione situacije uz respektovanje zakonske regulative za vanredni događaj i posledice primene nuklearnog oružja. Međutim, mnogi principi, organizacija rada, analitičke metode, nuklearna instrumentacija i drugo, zajednički su za rad u mirnodopskoj, kao i u akutnoj i hroničnoj radijacionoj situaciji. Da bi se dobijeni rezultati radiometrijskih ispitivanja mogli upoređivati na međunarodnom planu, što je veoma značajno za promet prehrambenih proizvoda, neophodno je da postoji ujednačenost tehnologija rada, radijaciono-higijenske procene konzumne vrednosti namirnica i stočne hrane, kao i radijacionog opterećenja i rizika za stanovništvo. Osnova za izradu ove knjige nalazi se u nekoliko publikacija međunarodnih organizacija (IAEA, FAO, WHO, ICRP i dr.), koje su navedene u bibliografiji. Ova knjiga treba da posluži kao osnova za realizaciju BIOTEHNIČKOG MONITORING SISTEMA (BIMOS), koji čini sastavni deo integralnog monitoringa radiokativnosti u mirnodopskoj situaciji u našoj zemlji. Procena radijacione ugroženosti biosfere, odnosno životne sredine i lanca hrane, od izvanrednog su značaja za zaštitu zdravlja ljudi. Realizacija ovog programa zahteva učešće stručnjaka različitih profila, od meteorologa, hemičara fizičara, informatičara, preko biotehnologa do zdravstvenih radnika. U ovoj knjizi nisu posebno razrađivana pitanja stručne i naučne osnove za radijaciono-higijensku kontrolu u biotehnologiji, pošto je problematika ove oblasti detaljno razrađena u publikaciji „RADIJACIONA HIGIJENA U BIOTEHNOLOGIJI“, Naučna knjiga, Beograd, 1991. Želja autora je da ova knjiga posluži kao vodič biotehničkim stručnjacima različitih profila (veterinari, agronomi, prehrambeni tehnolozi i dr.) prilikom uvođenja određenih radijaciono-higijenskih mera i kontrole u kompleksu biotehničke proizvodnje i prehrambene tehnologije. AUTORI SADRŽAJ Predgovor PRVI DEO Organizacija sistema radijacione kontrole 1. Radijaciona kontrola biotehničke proizvodnje 1. Mreža ustanova za radijaciono-higijensku kontrolu biotehničke proizvodnje PRVI NIVO DRUGI NIVO 2. Radiometrijske laboratorije 2.1. Centralna analitičko arbitražna radiometrijska laboratorija (AARL) 2.1.1. Posebna (namenska) zgrada Raspored prostorija u AARL 2.2. Radiometrijska laboratorija okruga (RLO) 2.2.1. Prostorni uslovi rada 3. Nuklearna instrumentacija i laboratorijska oprema 3.1. Nuklearna instrumentacija za AARL 3.2. Nuklearna instrumentacija za RLO 3.3. Laboratorijska oprema za AARL 3.4. Laboratorijska oprema za RLO 4. Stručni kadrovi za AARL i RLO 5. Osnovna pravila za bezbedan rad u radiometrijskoj laboratoriji 6. Terenska (pokretna) radiometrijska laboratorija (TRAL) 2. Radijacioni biotehnički monitoring 1. Organizacija biotehničkog monitoring sistema (BIMOS) 2. Osnove zakonske regulative za organizovanje BIMOS-a ZAKON O ZAŠTITI OD JONIZUJUĆEG ZRAČENJA I O NUKLEARNOJ SIGURNOSTI ZAKON O ZAŠTITI ŽIVOTINJA OD ZARAZNIH BOLESTI KOJE UGROŽAVAJU CELU ZEMLJU PODZAKONSKA REGULATIVA 3. Organizacija DRUGOG KRUGA BIMOS-a u Republici Srbiji 3.1. Predlog organizacije DRUGOG KRUGA BIMOS-a 3.2. Funkcionalni koncept DRUGOG KRUGA BIMOS-a 3.3. Institucionalne nadležnosti u DRUGOM KRUGU BIMOS-a ANALITIČKO-ARBITRAŽNA RADIOMETRIJSKA LABORATORIJA NAUČNOG INSTITUTA ZA VETERINARSTVO SRBIJE RADIOMETRIJSKE LABORATORUE OKRUGA REPUBLIČKA VETERINARSKA INSPEKCIJA 3.4. Realizacija predloženog DRUGOG KRUGA BIMOS-a PERIFERNI DEO DRUGOG KRUGA BIMOS-a Redovni uslovi Vanredni događaji SREDNJI DEO DRUGOG KRUGA BIMOS-a Redovni uslovi Vanredni događaji CENTRALNI DEO DRUGOG KRUGA BIMOS-a 4. Radijacioni biotehnički informacioni sistem (BINFOS) 4.1. Polazne osnove za formiranje BINFOS-a 4.2. Predlog organizacije BINFOS-a 4.2.1. Šifarnik za opšte podatke A) Radiometrijske laboratorije B) Okruzi Republike Srbije C) Opštine Republike Srbije 4.2.2. Šifarnik o vrsti radijacione analize 4.2.3. Šifarnik vrste uzoraka A) Voda B) Zemljište C) Biljke D) Životinje E) Namirnice F) Stočna hrana G) Krmne smeše DRUGI DEO Radni postupak radijacione kontrole 3. Putevi radioaktivne kontaminacije životne sredine i lanca hrane 1. Mogućnost radioaktivne kontaminacije Balkana u zavisnosti od sinoptičke situacije 1.1. Vazdušna strujanja pri zemljištu 1.2. Vazdušna strujanja na 1000 metara 1.3. Vazdušna strujanja na 3000 metara 1.4. Atmosfersko taloženje padavina 1.5. Procena opasnosti od radioaktivne kontaminacije iz pravca najbližih – susednih zemalja 2. Radijaciono osmatranje i izviđanje radioaktivno kontaminirane teritorije (KONZ-a) NASTANAK KONZ-a RADIJACIONO OSMATRANJE RADIJACIONO IZVIĐANJE VREME BEZOPASNOG BORAVKA NA KONZ-u 3. Izbor uzoraka iz životne sredine 3.1. Vazduh 3.2. Padavine (čvrste i tečne) 3.3. Voda 3.4. Sediment 3.5. Zemljište 3.6. Trava 4. Izbor uzoraka iz lanca hrane 4.1. Mleko 4.2. Meso 4.3. Ribe, rakovi i školjke 4.4. Med 4.5. Žitarice i pirinač 4.6. Povrće 4.7. Voće 4.8. Uzorak dnevnog obroka stanovništva 4.9. Ostala hrana 5. Radijacioni bioindikatori 5.1. Bioindikatori radioaktivne kontaminacije 4. Radionuklidi 1. Klasifikacija radionuklida u odnosu na vrstu nuklearnog akcidenta 1.1. Topljenje jezgra reaktora sa ili bez kontejmenta A) RADIONUKLIDI VAŽNI U PRVOM DANU B) RADIONUKLIDI VAŽNI U PRVOJ NEDELJI C) RADIONUKLIDI VAŽNI ZA DUŽI VREMENSKI PERIOD 1.2. Topljenje jezgra reaktora sa delovima kontejmenta A) RADIONUKLIDI VAŽNI U PRVOM DANU B) RADIONUKLIDI VAŽNI U PRVOJ NEDELJI C) RADIONUKLIDI VAŽNI ZA DUŽI VREMENSKI PERIOD 1.3. Ispuštanje iz postrojenja za preradu i obogaćivanje nuklearnog goriva 1.4. Ispuštanja iz postrojenja za preradu plutonijumovog goriva 2. Druga potencijalna ispuštanja radionuklida 3. Biološki značajni radionuklidi 3.1. Fisioni radionuklidi 3.2. Aktivacioni radionuklidi 3.3. Radionuklidi od posebnog značaja za životnu sredinu i lanac hrane 4. Radioaktivni raspad PRIKAZ ZAKONA RADIOAKTTVNOG RASPADA VREME POLURASPADA Biološko vreme poluraspada Etektivno vreme poluraspada Kritični organ 5. Metabolizam radionuklida 6. Zaštita od jonizujućeg zračenja u uslovima eksperimentalnog rada u radiometnjskoj iahoratoriji ZAŠTITA EKRANIZACIJOM ZAŠTITA VREMENOM I RASTOJANJEM 5. Sakupljanje, skladištenje i priprema uzoraka 1. Sakupljanje uzoraka 1.1. Uzorkovanje materijala u mirnodopskoj radijacionoj situaciji 1.1.1. Uzorkovanje materijala iz životne sredine UZORKOVANJE ZEMLJIŠTA UZORKOVANJE VODE 1.1.2. Uzorkovanje materijala iz lanca hrane VETERINARSKO-SANITARNI NADZOR UZORKOVANJE NAMIRNICA ŽIVOTINJSKOG POREKLA Uzorkovanje mesa i proizvoda od mesa Uzorkovanje mleka i proizvoda od mleka Uzorkovanje divljači Uzorkovanje riba, rakova i školjki Uzorkovanje jaja i proizvoda od jaja Uzorkovanje meda UZORKOVANJE STOČNE HRANE Uzorkovanje sveže kabaste hrane Uzorkovanje suve kabaste hrane Uzorkovanje koncentrovane stočne hrane FITO-SANITARNI NADZOR UZORKOVANJE NAMIRNICA BILJNOG POREKLA Uzorkovanje povrća Uzorkovanje voćnih plodova Uzorkovanje korenastih i krtolastih plodova Uzorkovanje žitarica Uzorkovanje namirnica biljnog porekla u skladištima 1.1.3. Dobijanje prosečnog uzorka 1.2. Uzorkovanje materijala u vreme vanrednog radijacionog događaja 1.3. Uzorkovanje materijala posle nuklearnog udara 1.4. Potrebne količine uzoraka 1.5. Pakovanje i obeležavanje uzoraka 1.6. Slanje uzoraka u radiometrijsku laboratoriju 2. Skladištenje – čuvanje uzoraka 3. Pripremanje uzoraka iz biotehničke proizvodnje za radijaciono-higijensku kontrolu MEHANIČKO ČIŠĆENJE SUŠENJE I UPARAVANJE HOMOGENIZACIJA SPALJIVANJE – MINERALIZACIJA TEČNI BIOLOŠKI MATERIJAL 3.1. Koncentrisanje i izdvajanje radionuklida METOD ODVAJANJA METOD TALOŽENJA METOD EKSTRAKCIJE METOD ELEKTROLIZE KOEFICIJENT ČISTOĆE 3.2. Određivanje hemijskog prinosa 4. Izrada preparata za radiometriju 4.1. Opšti uslovi izrade preparata za radiometriju 4.1.1. Alfa emiteri 4.1.2. Beta emiteri 4.1.3. Gama emiteri 4.2. Metodologija izrade preparata za radiometriju 4.2.1. Preparisanje uzoraka za gama spektrometrijsku analizu 4.2.2. Preparisanje uzoraka za indikatorsko merenje ukupne aktivnosti iz nativnog uzorka u debelom sloju 4.2.3. Preparisanje uzorka za merenje niske beta aktivnosti 6. Radiometrija uzoraka iz lanca hrane METODE OTKRIVANJA RADIOAKTIVNIH SUPSTANCIJA METODE ZA ODREĐIVANJE SADRŽAJA I IDENTIFIKACIJU RADIONUKLIDA DIREKTNE INSTRUMENTALNE ANALIZE RADIOHEMIJSKE ANALIZE METODA TANKOSLOJNOG UZORKA (TSU) METODA DEBELOSLOJNOG UZORKA (DSU) METODE MERENJA NISKIH AKTIVNOSTI METODE MERENJA VISOKIH AKTIVNOSTI 1. Radiometrija u mirnodopskoj situaciji 1.1. Antikoincidentni merni uređaj LARA-5 1.1.1. Namena uređaja 1.1.2. Sastav i karakteristike mernog uređaja LARA-5 TEHNIČKE KARAKTERISTIKE OLOVNOG KUĆIŠTA LOLA-5 TEHNIČKE KARAKTERISTIKE ELEKTRONSKOG UREĐAJA SVIT-5 1.1.3. Opis mernog uređaja LARA-5 OLOVNO KUĆIŠTE LOLA-5 ELEKTRONSKI UREĐAJ SVIT-5 STABILIZATOR NAPONA ST-10 1.1.4. Princip primene uređaja LARA-5 1.1.5. Uključivanje mernog uređaja LARA-5 MERENJE UZORAKA VRLO NISKIH NIVOA BETA AKTIVNOSTI MERENJE UZORAKA VIŠIH NIVOA BETA AKTIVNOSTI 1.2. Radiometrijski uređaj LARA-86 1.2.1. Namena laboratorije 1.2.2. Sastav i karakteristike laboratorije 1.2.3. Opis radiometrijskog uređaja LARA-86 1.2.4. Princip primene uređaja LARA-86 1.2.5. Uključivanje uređaja LARA-86 1.2.6. Metodologija rada 1.3. Radiometrijska laboratorija LARA-GS 1.3.1. Namena laboratorije 1.3.2. Princip metode 1.3.3. Sastav i karakteristike laboratorije 1.3.4. Opis laboratorije LARA-GS 1.3.5. Povezivanje uređaja LARA-GS 1.3.6. Metodologija rada 2. Radiometrija u akutnoj radijacionoj situaciji 2.1. Monitori radioaktivnog zračenja i monitori radioaktivne kontaminacije 2.1.1. Monitor kontaminacije KOMO-TM NAMENA INSTRUMENTA KARAKTERISTIKE INSTRUMENTA OPIS INSTRUMENTA METODOLOGIJA RADA 2.1.2. Monitor kontaminacije KOMO-TN NAMENA MONITORA KARAKTERISTIKE INSTRUMENTA OPIS INSTRUMENTA METODOLOGIJA RADA 2.1.3. Monitor kontaminacije KOMO-TL NAMENA INSTRUMENTA KARAKTERISTIKE INSTRUMENTA OPIS INSTRUMENTA METODOLOGIJA RADA 2.1.4. Alarmni monitor zračenja MZ-10 NAMENA MONITORA ZRAČENJA MZ-10 KARAKTERISTIKE UREĐAJA MZ-10 OPIS UREĐAJA METODOLOGIJA RADA 2.1.5. Alarmni monitor zračenja MZ-20 2.1.6. Alarmni monitor zračenja MZ-30 2.1.7. Alarmni monitor zračenja MZ-100 NAMENA MONITORA ZRAČENJA MZ-100 KARAKTERISTIKE UREĐAJA MZ-100 2.2. Radiometrijska laboratorija LARA-10 2.2.1. Namena laboratorije 2.2.2. Princip metode 2.2.3. Sastav i karakteristike RL 2.2.4. Opis laboratorije LARA-10 2.2.5. Povezivanje uređaja LARA-10 2.2.6. Režim rada u RL LARA-10 2.2.7. Metodologija radiometrije TRIJAŽA UZORAKA ORIJENTACIONA MERENJA PRONALAŽENJE ODGOVARAJUĆEG ABSORBERA – FILTRA IZRADA VREMENSKOG PROGRAMA MERENJA KONAČNA MERENJA I PRORAČUN MASENE AKTIVNOSTI 2.2.8. Osnovni principi za pravilan i bezbedan rad ZNAČAJNE NAPOMENE ZA RAZVIJANJE RL ZNAČAJNA PRAVILA ZA VREME RADNOG VREMENA U RL RAD NA PRIPREMI UZORAKA DEKONTAMINACIJA UREĐAJA I PRIBORA ODRŽAVANJE RL LARA-10 ISPUNJAVANJE REGISTARSKOG KARTONA 7. Spektrometrijske metode identifikacije radionuklida 1. Gama spektrometrijska analiza – metoda za determinaciju gama emitera 1.1. Princip i primena metode 1.2. Potrebni reagensi, pribor i standardi 1.3. Nuklearno merilo – sistem za gama spektrometriju 1.4. Kalibracija gama spektrometrijskog sistema 1.4.1. Energetska kalibracija 1.4.2. Kalibracija efikasnosti A – Oblik brojanja uzorka B – Metoda kalibracije C – Kalibracioni izvori D – Analitičko izražavanje efikasnosti 1.5. Razmatranje gama spektrometrijskog merenja 1.5.1. Geometrija merenja 1.5.2. Osnovno zračenje – fon 1.5.3. Granica detekcije 1.6. Obrada spektra 1.6.1. Kompjuterska obrada spektra 1.6.2. Ručna obrada spektra 1.7. Izračunavanje nivoa aktivnosti 1.7.1. Nivo aktivnosti u vreme merenja 1.7.2. Korekcija za radioaktivni raspad 1.7.3. Konačno izračunavanje – obračun nivoa aktivnosti 1.7.4. Standardna devijacija 1.8. Pouzdanost – tačnost merenja 2. Terenska gama spektrometrijska analiza – metoda za determinaciju gama emitera direktno na terenu 3. Alfa spektrometrijska analiza – metoda za determinaciju alfa emitera 4. Scintilaciona spektrometrijska analiza – metoda za determinaciju beta i gama emitera 4.1. Tečna scintilaciona spektrometrijska analiza – metoda za determinaciju beta emitera 4.1.1. Izbor scintilatora 4.1.2. Efekt gašenja kod tečnih scintilatora 8. Radiohemijske metode identifikacije radionuklida 1. Metoda za radiohemijsko određivanje stroncijuma 1.1. Određivanje radioaktivnog stroncijuma u različitim uzorcima nitratnim taloženjem – precipitacijom A – Osnova metode B – Reagensi C – Priprema uzoraka za analizu D – Opšti postupak 1.1.1. Određivanje radioaktivnog strocijuma u mleku i siru A – Dopunski reagensi B – Priprema uzoraka za analizu C – Postupak 1.1.2. Određivanje radioaktivnog stroncijuma u žitaricama, povrću, biljkama i drugim prehrambenim proizvodima A – Dopunski reagensi B – Priprema uzoraka za analizu C – Postupak 1.1.3. Određivanje radioaktivnog stroncijuma u vodi A – Dopunski reagensi B – Postupak 1.2. Modifikovana nitratna metoda za određivanje stroncijuma-90 u zemljištu A – Osnova metode B – Reagensi C – Priprema uzoraka za analizu D – Postupak E – Modifikacija za zemljišta sa visokim sadržajem aluminijuma F – Određivanje kalcijuma 1.3. Izračunavanje sadržaja stroncijuma-90 1.3.1. Izračunavanje na osnovu brojanja itrijuma 1.3.2. Izračunavanje na osnovu brojanja stroncijuma 1.4. Izračunavanje sadržaja stroncijuma-89 1.4.1. Izračunavanje na osnovu brojanja stroncijuma preko apsorbera od 100 mg/cm 1.4.2. Izračunavanje na osnovu brojanja starog stroncijumovog izvora 1.4.3. Izračunavanje na osnovu ponovljenog brojanja izvora stroncijuma 1.5. Kalibracija – baždarenje brojača 1.5.1. Kalibracija za stroncijum-89 1.5.2. Kalibracija za stroncijum-90 preko apsorbera od 100 mg/cm 1.5.3. Kalibracija za stroncijum-90 i itrijum-90 1.5.4. Kalibracija za itrijum-90 1.6. Određivanje kalcijuma 1.6.1. Određivanje kalcijuma u pepelu mleka 1.6.2. Određivanje kalcijuma u biljkama i pepelu povrća 1.7. Upotreba trasera stroncijuma-85 za određivanje hemijskog prinosa 1.7.1. Postupak koji se preporučuje 2. Metoda za radiohemijsko određivanje tricijuma 2.1. Namena i oblast primene metode 2.2. Princip metode 2.3. Reagensi 2.4. Voda sa vrlo niskim sadržajem tricijuma – blank voda 2.5. Rastvor internog standarda 2.6. Rastvor scintilatora 2.7. Aparatura 2.8. Uzorkovanje i uzorci 2.9. Analitički postupak 2.9.1. Priprema uzoraka 2.9.2. Punjenje bočica za brojanje 2.9.3. Postupak brojanja – merenja 2.10. Prikazivanje rezultata – metoda izračunavanja 2.10.1. Efikasnost brojanja – merenja 2.10.2. Koncentracija aktivnosti tricijuma u uzorku 2.10.3. Greške uzrokovane statistikom prirodnog radioaktivnog raspada i osnovnim zračenjem-fonom 2.11. Optimizacija uslova brojanja – merenja 2.11.1. Donja granica detekcije – najmanja koncentracija aktivnosti koja se može detektovati 2.11.2. Optimalno podešavanje kanala za merenje 2.12. Kontrola kvaliteta 2.12.1. Interferencija usled luminiscencije 2.12.2. Stabilnost opreme 2.13. Izveštaj o izvršenoj analizi 3. Metode za radiohemijsko određivanje plutonijuma, americijuma i kirijuma 3.1. Određivanje plutonijuma, americijuma i kirijuma u biološkim uzorcima, sedimentu, zemljištu, vodi i vazdušnim filtrima A – Osnova metode B – Aparati C – Reagensi 3.1.1. Određivanje plutonijuma, americijuma i kirijuma u biološkim uzorcima A – Priprema uzorka 3.1.2. Određivanje plutonijuma, americijuma i kirijuma u uzorcima vode A – Priprema uzorka 3.1.3. Određivanje plutonijuma, americijuma i kirijuma u filtrima od staklenih vlakana A – Priprema uzorka 3.1.4. Određivanje plutonijuma, americijuma i kirijuma u sedimentu i uzorcima zemljišta A – Priprema uzorka 3.2. Izdvajanje plutonijuma A. Jonoizmenjivački postupak I 3.3. Izdvajanje americijuma i kirijuma A. Postupak taloženja oksalata B. Jonoizmenjivački postupak II – korak čišćenja C. Postupak ekstrakcije D. Jonoizmenjivački postupak III – izdvajanje Am/Cm iz retke zemlje 3.4. Elektrodepozicija A. Priprema za depoziciju B. Elektro deponovanje 3.5. Izračunavanje A. Izračunavanje aktivnosti 3.6. Opšta obeležja A. Alfa spektrometrija 4. Kontrola kvaliteta analiza 4.1. Program službe za kontrolu kvaliteta analiza 4.2. Kalibracija i standardi 4.3. Interkomparacija 4.4. Program interne kontrole A. Kontrola – provera opreme B. Kontrola uzoraka za analizu C. Prikazivanje rezultata 9. Osnovni elementi statističke obrade rezultata merenja radioaktivnosti Sistematske greške merenja radioaktivnosti Slučajne greške merenja radioaktivnosti 1. Teorijske osnove bazičnih statističkih pojmova 1.1. Srednje vrednosti 1.2. Mere varijacije 1.3. T-test 1.4. Korelaciono-regresiona analiza 2. Procena mernih vrednosti i greška mernih vrednosti radijacije 2.1. Procena mernih vrednosti radioaktivnosti 2.2. Procena grešaka mernih vrednosti radioaktivnosti 2.3. Analiza varijanse POTPUNI SLUČAJNI PLAN 3. Statistička obrada rezultata merenja jačine ekspozicione doze (X) polja gama zračenja u životnoj sredini 3.1. Postupak statističke obrade rezultata merenja gama-fona 3.2. Postupak grafičkog prikazivanja kretanja gama-fona 4. Statistička obrada rezultata merenja nivoa aktivnosti biološki značajnih radionuklida – čistih beta emitera – prisutnih u lancu hrane 4.1. Provera ispravnosti rada mernog uređaja LARA-5 4.2. Provera stabilnosti rada mernog uređaja LARA-5 4.3. Utvrđivanje efikasnosti mernog uređaja LARA-5 4.4. Određivanje samoapsorpcije beta zračenja u mineralnom 295 ostatku uzorka SNIMANJE KRIVIH SAMOAPSORPCIJE I ODREĐIVANJE KOREKCIONOG FAKTORA SAMOAPSORPCIJE 4.5. Izračunavanje specifične, masene beta aktivnosti 10. Metodologija utvrđivanja radijacionih bioindikatorskih vrednosti (RBV) PRVI MODEL DRUGI MODEL TREĆI MODEL 11. Radioaktivna dekontaminacija u radiometrijskoj laboratoriji 1. Postupak u slučaju radioaktivne kontaminacije u radiometrijskoj laboratoriji 2. Radioaktivna dekontaminacija radnih površina 3. Radioaktivna dekontaminacija laboratorijskog posuđa 4. Radioaktivna dekontaminacija nuklearnih merila 5. Radioaktivna dekontaminacija osoblja koje radi u RL 5.1. Principi i pravila pri sprovođenju radioaktivne dekontaminacije 5.2. Fizičko-hemijske karakteristike sredstava za radioaktivnu dekontaminaciju 5.3. Sredstva za radioaktivnu dekontaminaciju sa postupkom korišćenja 5.4. Prva pomoć u slučaju radioaktivne kontaminacije radnog osoblja TREĆI DEO Normativna regulativa radijacione kontrole 12. Normativna regulativa radijacione bezbednosti u biotehničkoj proizvodnji 1. Norme radijacione bezbednosti za stočnu hranu u vreme mirnodopske radijacione situacije 2. Norme radijacione bezbednosti za stočnu hranu u slučaju vanrednog događaja (nuklearni udes u mirnodopskoj radijacionoj situaciji) 3. Norme radijacione bezbednosti za namirnice i stočnu hranu u akutnoj i hroničnoj fazi radijacione situacije posle nuklearnog udara ČETVRTI DEO Pregled radijacionih jedinica i osnovnih podataka o radionuklidima i fizičkim konstantama 13. Praktična uputstva 1. Radioaktivnost 2. Relativne atomske mase elemenata 3. Fizičke konstante 4. Indikatori 5. Molno sniženje °t rastvarača 6. Ravnotežni naponi pare vode 7. Kiseline i baze 8. Proizvod rastvorljivosti 9. Elektrodni potencijal elektrohemijskih reakcija 10. Podaci o radionuklidima Literatura Curriculum vitae autora Sa potpisom Autora. Knjiga u PERFEKTNOM stanju 1k

Prikaži sve...
2,240RSD
forward
forward
Detaljnije

Poslednjih 14 milijardi godina: astronomija u 609 pitanja i odgovora / Milan M. Ćirković, Aleksandar Zorkić, Slobodan Spremo Novi Sad 2006. Mek povez, ilustrovano, 377 strana. Knjiga je odlično očuvana. D1 Uopšte ne morate da budete student astronomije da biste uživali u `POSLEDNJIH 14 MILIJARDI GODINA`. Sve čega se Milan Ćirković dotakne, ovoga puta uz saradnju Aleksandra Zorkića i Slobodana Spreme, pretvara se u nepomućenu, očaravajuću radost znanja. dr Zoran Živković Knjiga je napisana u formi kviza: postavljeno pitanje, ponuđena četiri odgovora pod a,b,c,d a na kraju svakog od šest poglavlja dati su tačni odgovori sa obrazloženjima. Poglavlja su: - Zvezde i međuzvezdana materija, - Galaksije i kosmologija, - Planetarne nauke i život van Zemlje, - Istorija astronomije i kosmonautike, - Instrumenti i opservatorije, - i astronomija u kulturi. Predgovor za knjigu je napisao dr Zoran Knežević, direkor Astronomske opservatorije u Beogradu.

Prikaži sve...
900RSD
forward
forward
Detaljnije

by W. N. Venables, B. D. Ripley Springer 1994 462 strane odlična očuvanost S-Plus is a powerful environment for statistical and graphical analysis of data. It provides the tools to implement many statistical ideas which have been made possible by the widespread availability of workstations having good graphics and computational capabilities. This book is a guide to using S-Plus to perform statistical analyses and provides both an introduction to the use of S-Plus and a course in modern statistical methods. The aim of the book is to show how to use S-Plus as a powerful and graphical system. Readers are assumed to have a basic grounding in statistics, and so the book is intended for would-be users of S-Plus, and both students and researchers using statistics. Throughout, the emphasis is on presenting practical problems and full analyses of real data sets.

Prikaži sve...
4,995RSD
forward
forward
Detaljnije

Wolfgang J. Thron - Topological Structures Holt, Rinehart and Winston, New York, 1966 240 str. tvrdi povez stanje: vrlo dobro, potpis na predlistu. Common terms and phrases A₁ addition arbitrary assertion assume axioms B₁ base bicompact called cardinality Cauchy filter Clearly closed set closure cluster point complete component concept connected connected set considered consisting contains continuous function converges countably compact defined definition denoted dense denumerable determine disjoint easily elements embedding equivalent example exists extension fact filter Finally finite follows follows from Theorem function f further give given hence homeomorphism implies intersection introduced invariant isomorphism lattice least limit point locally means metric space neighborhood normal obtain open sets operator ordered pair preserved proof Prove proximity pseudometric regular relation remark requirements respect satisfies separated sequence structure subbase subset sufficient T₁-space theorem topological group topological space X,T topological structure topology totally bounded true uniform uniform space uniformly continuous union unique Nonfiction, Mathematics

Prikaži sve...
3,000RSD
forward
forward
Detaljnije

58969) Progress in Numerical Fluid Dynamics - Lecture Notes in Physics , Springer Verlag Berlin Heidelberg New York 1975 ; Lecture Series held at the von Karman Institute for Fluid Dynamics 1640 Rhode-St.-Genèse, Belgium February 11–15, 1974 TABLE OF CONTENTS BAILEY, F.R.: On the computation of two- and three-dimensional steady transsonic flows by relaxation methods. CHENG, Sin-I: A critical review of numerical solution of Navier-Stokes equations FRAEIJS de VEUBEKE, B.: Variational principles in fluid mechanics and finite element applications KRAUSE, E.: Recent developments of finite-difference approxi- mations for boundary layer equations KUTLER, Paul: Computation of three-dimensional, inviscid supersonic flows MUELLER, Thomas J.: Numerical and physical experiments in viscous separated flows SMOLDEREN, J.: Stability of explicit time dependent treatment of hyperbolic boundary problems VANSTEENKISTE,G.C.: Improving of the numerical solutions by using analogue subroutines WIRZ, H.J.: Computation of unsteady boundary layers paperback, size 16,5 x 24 cm , ex library copy , 473 pages

Prikaži sve...
2,000RSD
forward
forward
Detaljnije

Lepo očuvano Molecular Quantum Mechanics: Analytic Gradients and Beyond, Selected Papers of Peter Pulay Kvantna hemija Molecular Quantum Mechanics: Analytic Gradients and Beyond, Selected Papers of Peter Pulay Csaszar, Attila G. , Geza Fogarasi, Henry F. Schaeffer Iii and Peter G. Szalay Published by ELTE Institute of Chemistry (2007) Peter Pulay (born September 20, 1941, in Veszprém, Hungary) is a theoretical chemist. He is the Roger B. Bost Distinguished Professor of Chemistry in the Department of Chemistry and Biochemistry at the University of Arkansas, United States. One of his most important contributions is the introduction of the gradient method in quantum chemistry. This allows the prediction of the geometric structure of a molecule using computational chemical programs to be almost routine. He is the main author of the PQS computational chemistry program. His work was cited in the official background material for the 1998 Nobel Prize in chemistry. Among many honors, he was made a Foreign Member of the Hungarian Academy of Sciences in 1993. He is a member of the International Academy of Quantum Molecular Science.

Prikaži sve...
15,990RSD
forward
forward
Detaljnije

Sistematska identifikacija organskih jedinjenja Izdavač: Savremena administracija, Beograd Autori: Nicholas D. Cheronis, John B. Entrikin, Ernest M. Hodnett Povez: tvrd Broj strana: 899 Sadržaj priložen na slikama. Pečat na predlistu, donji ćoškići korica malo oguljeni. Greškom pri štampanju jedan tabak od 8 listova izostavljen (poglavlje sa tabelama str. 737-753). Uz prethodne napomene knjiga je vrlo dobro očuvana. S A D R Ž A J: PRVI DEO: TEHNIKA ORGANSKE ANALIZE 1. Uvod 2. Uređaji i postupci za rad sa malim količinama materijala 3. Postupci frakcionisanja 4. Postupci razdvajanja 5. Fizičke osobine organskih jedinjenja 6. Razdvajanje smeša DRUGI DEO: POSTUPCI ZA PROBNU IDENTIFIKACIJU NEPOZNATE SUPSTANCE 7. Preliminarno ispitivanje čistog jedinjenja 8. Klasifikacija pomoću rastvorljivosti 9. Klasifikacija metodom indikatora 10. Probe za klasifikaciju nepoznate supstance TREĆI DEO: POSTUPCI ZA KONAČNO ODREĐIVANJE OSOBINA NEPOZNATE SUPSTANCE 11. Problemi kod pripravljanja derivata organskih jedinjenja 12. Derivati karbonskih kiselina i kiselinskih derivata 13. Derivati alkohola i fenola (Monohidroksi i polihidroksi) 14. Derivati aldehida, ketona i acetala 15. Derivati ugljenih hidrata 16. Derivati estara i etara 17. Derivati halogenskih jedinjenja 18. Derivati ugljovodonika 19. Derivati aminoazotnih junkcija 20. Derivati drugih azotnih funkcija 21. Derivati funkcija sa sumporom 22. Instrumentalne metode ČETVRTI DEO: TABELE ORGANSKIH JEDINJENJA SA NJIHOVIM KONSTANTAMA I DERIVATIMA (K-153)

Prikaži sve...
1,380RSD
forward
forward
Detaljnije

58999) Computational Mathematics Driven by Industrial Problems , by R. Burkard (Author), P. Deuflhard (Author), A. Jameson (Author), J.-L. Lions (Author), G. Strang (Author), V. Capasso (Editor), Springer Verlag 2000 ; Lecture Notes in Mathematics, 1739 These lecture notes by very authoritative scientists survey recent advances of mathematics driven by industrial application showing not only how mathematics is applied to industry but also how mathematics has drawn benefit from interaction with real-word problems. The famous David Report underlines that innovative high technology depends crucially for its development on innovation in mathematics. The speakers include three recent presidents of ECMI, one of ECCOMAS (in Europe) and the president of SIAM. Trees and Paths: Graph Optimisation Problems with Industrial Applications -R. E. Burkard Mathematical Models for Polymer Crystallization Processes - V. Capasso Differential Equations in Technology and Medicine: Computational Concepts, Adaptive Algorithms, and Virtual Labs - P. Deuflhard Inverse Problems and Their Regularization - H. W. Engl Aerodynamic Shape Optimization Techniques Based on Control Theory - A. Jameson, L. Martinelli Complexity in Industrial Problems. Some remarks. - J.-L. Lions Flow and Heat Transfer in Pressing of Glass Products - K. Laevksy, B. J. van der Linden, R. M. M. Mattheij Drag Reduction by Active Control for Flow Past Cylinders - J.-W. He, M. Chevalier, R. Glowinski, R. Metcalfe, A. Nordlander, J. Periaux Signal Processing for Everyone - G. Strang List of Participants paperback, size 15,5 x 23,5 cm , 414 pages

Prikaži sve...
1,500RSD
forward
forward
Detaljnije

Pet doba svemira - Fred Adams i Greg Lohlin KAO NOVA Strana: 326 Naučna životna priča svemira - od početka do kraja - unutar fizike večnosti: - Praiskonsko doba - Doba zvezda - Degenerativno doba - Doba crnih rupa - Mračno doba Krajem dvadesetog veka, Fred Adams i Greg Lohlin privukli su pažnju naučne i šire javnosti svojim prepoznavanjem i opisivanjem pet doba vremena. U svojoj knjizi `Pet doba svemira` Adams i Lohlin dokazuju da u ovom trenutku možemo shvatiti celu životnu priču svemira - od početka do kraja. Adams i Lohlin su priznati i hvaljeni kao autori konačne dugoročne projekcije razvoja svemira. Njihovo dostignuće je ogromnih razmera i naučno utemeljeno. Međutim, ova knjiga nije samo priručnik s objašnjenjima fizičkih procesa koji su oblikovali našu prošlost i koji će uticati na našu budućnost. Sa ovom knjigom ćete, ne napuštajući našu planetu, krenuti na fantastično putovanje kroz fiziku večnosti. To je jedina biografija svemira koja će vam ikada biti potrebna. `Predivan stil i objašnjenja koja pomeraju granice naših saznanja... Ono što ovu knjigu čini boljom od dobre naučne fantastike jeste činjenica da je istinita.` - Suzan Oki, The Washington Post Fred Adams je doktorirao na Univerzitetu Kalifornija (University of California). Profesor je fizike na Univerzitetu Mičigen. Dobitnik je prestižne nagrade Helen B. Warner. Živi u gradu En Arbor u državi Mičigen. Greg Lohlin je doktorirao na Univerzitetu Kalifornija u Santa Kruzu. Bio je stipendista Nacionalne naučne fondacije pri Nacionalnoj astronomskoj opservatoriji u Japanu. Istraživanja obavlja na Univerzitetu Kalifornija. Živi u Berkliju, u Kaliforniji. Odrednice: Astronomija, fizika, crne rupe, galaksije, zvezde, postanak sveta, svemir, vasiona

Prikaži sve...
529RSD
forward
forward
Detaljnije

Autor - osoba Cvijić, Jovan, 1865-1927 = Cvijić, Jovan, 1865-1927 Naslov Karst : geografska monografija ; Novi rezultati o glacijalnoj eposi Balkanskoga poluostrva / Jovan Cvijić ; urednici Petar Stevanović, odgovorni urednik, Mihailo Maletić i Dragutin Ranković Vrsta građe stručna monog. Ciljna grupa odrasli, ozbiljna (nije lepa knjiž.) Jezik srpski Godina 1987 Izdavanje i proizvodnja Beograd : Srpska akademija nauka i umetnosti : Književne novine : Zavod za udžbenike i nastavna sredstva, 1987 Fizički opis 411 str., [1] list so slika na avtorot : ilustr. ; 25 cm Zbirka Sabrana dela / Jovan Cvijić ; knj. 1 Napomene Stv. nasl. vo kolofonot: Karst ; Glacijacije Balkanskog polustrova Život i rad Jovana Cvijića / Vasa Čubrilović: str. 13-156 Dnevnik / Ljubica Cvijić: str. 157-194 Kras i glacijacija: komentar /Dragutin Petrović: str. 393-407 Bibliografija / Borivoje Ž. Milojević, Dragutin Petrović i Milorad Vasović: str. 195-202 Jovan Cvijić (Loznica, 11. oktobar 1865 – Beograd, 16. januar 1927) bio je srpski naučnik, osnivač Srpskog geografskog društva, predsednik Srpske kraljevske akademije, profesor i rektor Beogradskog univerziteta, počasni doktor Univerziteta Sorbone i Karlovog univerziteta u Pragu. Od osnivanja Beogradskog univerziteta 12. oktobra 1905, postao je jedan od osam prvih redovnih profesora na Univerzitetu. Cvijić je počeo da se bavi naukom još kao student Velike škole i tada je nastao njegov rad Prilog geografskoj terminologiji našoj, a nastavio kao srednjoškolski profesor i bečki student proučavajući kraške pojave u istočnoj Srbiji, Istri i Jadranskom primorju. Na osnovu tih proučavanja napisao je više radova kao i svoju doktorsku disertaciju. Čitav život posvetio je proučavanju Srbije i Balkanskog poluostrva putujući skoro svake godine po Balkanu. Tokom života, odnosno za preko trideset godina intenzivnog naučnog rada, objavio je par stotina naučnih radova. Jedno od najvažnijih dela je „Balkansko poluostrvo“. Bavio se podjednako društvenom i fizičkom geografijom, geomorfologijom, etnografijom, geologijom, antropologijom i istorijom. Smatra se utemeljivačem srpske geografije. Jovan Cvijić je rođen 11. oktobra (29. septembra po julijanskom kalendaru) 1865. godine u Loznici u porodici Cvijića, koja je bila ogranak Spasojevića iz pivskog plemena. Otac mu se zvao Todor Cvijić. Njegova porodica je bila poreklom iz oblasti Stare Hercegovine, iz plemena Pivljana, i bavio se trgovinom. Njegov otac, a naime Jovanov deda, bio je Živko Cvijić, predsednik lozničke skupštine i poznati mačvanski Obrenovićevac. Kako je bio na strani tzv. „katana“ u vreme katanske bune protivnika ustavobranitelja 1844. godine, kažnjen je šibovanjem posle uspešne akcije Tome Vučića Perišića, nakon čega je umro još mlad. Njegov otac, a pak Jovanov pradeda, Cvijo Spasojević, bio je rodonačelnik Cvijića. Cvijo je bio poznati hajdučki harambaša u tom delu Stare Hercegovine. Cvijo se borio protiv Osmanlija Prvog srpskog ustanka, a nakon njegove propasti 1813. godine, preselio se u Loznicu, gde je kod šanca i crkve sagradio kuću hercegovačkog tipa na dva sprata i otvorio dućan, započinjući trgovačku karijeru novoosnovane familije. Cvijićev otac Todor (umro 1900) se u početku i sam bavio trgovinom, ali kako mu to nije išlo za rukom, zaposlio se u opštini kao pisar i delovođa. Majka Jovanova Marija (rođena Avramović), bila je iz ugledne porodice iz mesta Korenita, sela u oblasti Jadar koje se nalazi nedaleko od manastira Tronoša i Tršića, rodnog sela Vuka Karadžića. Osim Jovana, Todor i Marija imali su sina Živka i tri kćeri, Milevu, udatu za Vladimira, sarača, Nadu, udatu za Dragutina Babića okružnog blagajnika, kasnijeg načelnika ministarstva finansija, i Soku. Cvijić je često govorio da je u detinjstvu na njegovo duhovno obrazovanje najviše uticala majka i uopšte majčina porodica, mirna, staložena i domaćinska, dok je o ocu i očevoj porodici pisao sa dosta manje emocija. Ipak, Cvijić je u svom naučno-istraživačkom radu o narodnoj psihologiji imao pohvalne reči za dinarski etnički tip i karakter, kome upravo i pripada njegov otac Nakon osnovne škole koju je završio u Loznici, završio je nižu gimnaziju u Loznici (prve dve godine) i gimnaziju u Šapcu (treću i četvrtu godinu), a potom se upisao i završio višu Prvu beogradsku gimnaziju, u generaciji sa Miloradom Mitrovićem, Mihailom Petrovićem Alasom i drugim velikanima, o čemu je napisan roman i snimljen TV-film „Šešir profesora Koste Vujića“ Godine 1884, po završetku gimnazije, hteo je da studira medicinu, međutim loznička opština nije bila u mogućnosti da stipendira njegovo školovanje u inostranstvu. Tada mu je Vladimir Karić, njegov profesor iz šabačke gimnazije, predložio da sluša studije geografije na Velikoj školi u Beogradu. Cvijić ga je poslušao i iste godine upisao Prirodno-matematički odsek Velike škole u Beogradu. Ove studije je završio 1888. godine. Tokom svog školovanja Cvijić je bio posvećen čitanju knjiga. U gimnaziji je učio engleski, nemački i francuski jezik koji su mu tokom studija veoma koristili budući da nije postojala odgovarajuća naučna građa na srpskom. Kasnije je na stranim jezicima pisao i naučne i druge radove. Školske godine 1888/89. radio je kao predavač geografije u Drugoj muškoj beogradskoj gimnaziji. Potom je 1889. upisao studije fizičke geografije i geologije na Bečkom univerzitetu kao državni pitomac. U to vreme na Bečkom Univerzitetu predavanja iz geomorfologije držao je čuveni naučnik dr Albreht Penk (nem. Albrecht Penck), geotektoniku je držao profesor Edvard Zis (tadašnji predsednik Austrijske akademije nauka), a klimatologiju Julijus fon Han. Cvijić je doktorirao 1893. godine na Univerzitetu u Beču. Njegova doktorska teza pod nazivom „Das Karstphänomen“ predstavila ga je široj javnosti i učinila poznatim u svetskim naučnim krugovima. Ovaj rad je kasnije preveden na više jezika (kod nas „Karst“, 1895) a zahvaljujući njemu Cvijić se u svetu smatra utemeljivačem karstologije. Britanski naučnik Arčibald Giki je napisao da ovo predstavlja „zastavničko delo“ nauke... S AD R Ž AJ: PREDGOVOR 7 Vasa Čubrilović ŽIVOT I RAD JOVANA CVIJIĆA 13 Uvod 15 Poreklo i mladost 20 Na Velikoj školi u Beogradu i na univerzitetu u Beču 28 Profesor na Velikoj školi u Beogradu 1893–1905. godine 32 Nastavnik na Univerzitetu u Beogradu 37 Rektor Univerziteta u Beogradu 42 Delatnost u Srpskoj kraljevskoj akademiji nauka 46 Lični život 52 Naučni rad 59 Cvijić kao organizator naučnoistraživačkog rada 66 Naučni radovi iz fizičke geografije 70 Naučni radovi iz antropogeografije i etnografije Balkanskog Poluostrva.... 73 Balkansko poluostrvo 75 Nacionalno-politički i etnografski spisi 86 Učešće u javnom životu Srbije do ratova 1912–1918 98 Ratovi 1912–1918 109 Rad u emigraciji 1916–1919 godine 130 Predsednik Entografsko-istorijske sekcije Jugoslovenske delegacije na Konferenciji mira u Parizu 1919 godine 135 Povratak u zemlju i poslednje godine života 145 Napomene 153 Ljubica Cvijić DNEVNIK 157 Borivoje Ž. Milojević, Dragutin Petrović i Milorad Vasović BIBLIOGRAFIJA 195 I Geografska i geološka terminologija 195 II Karst 195 A) Karst uopšte 195 B) Karst u Srbiji 195 III Glacijalna epoha i glacijalni reljef Balkanskog poluostrva, južnih Karpata i maloazijskog Olimpa 196 IV Današnja i stara jezera Balkanskog poluostrva 197 V Morfologija, tektonika i geologija 198 VI Antropogeografija i etnografija Balkanskog poluostrva 199 VII Metodika, kartografija, kartometrija i bibliografija 200 VIII Nacionalna i etnografska pitanja 201 KARST – Geografska monografija 203 Uvod 203 I Škrape 207 Strana II Vrtače 212 A. Definicija i nazvala 212 B. Oblici vrtača 213 1. Normalni oblici 213 2. Odstupala od normalnih veličina i oblika 216 3. Nagib strana kod vrtača 218 4. Dno i nanos u vrtačama 219 5. Bszdani 225 6. Sipar u vigledima i zvekarama 234 7. Aluvijalns vrtače 238 8. Odnos između vrtača i pećina 243 C. Lokalno rasprostranenьe i red vrtača 248 D. Odnos vrtača prema geološkim orguljama 250 E. Stvarale vrtača 254 1. Stariji nazori o stvaranju vrtača 254 2. Činjenice za ocenu teorije stropoštavanja 257 3. Stvarale pravih vrtača 258 III Reke karsta 266 IV Doline karsta 273 V Pola 282 A. Definicija, ime, površina 282 1. Površina pola zapadne Bosne i Hercegovine 283 2. Polja u Dalmaciji, na ostrvima i na Istri 283 3. Polja i uvale slične poljima u Crnoj Gori 284 B. Oblik i dimenzije 284 4. Strane i ravan, sastav ravni u poljima 285 B. Hidrografske prilike polja 287 1. Suva polja 287 2. Periodski plavljena pola 288 3. Jezerska polja 293 4. Reke, vrela, ponori i estavele 297 5. Povodanj u poljima 299 6. Vreme nastupala i trajala povodnja u periodski plavljenim poljima 302 G. Geološka struktura i postajale polja 303 Struktura polja na Jamajci 304 VI Jadranska karstna obala 306 Nerazuđena obala 306 Razuđena obala 311 VII Rasprostranjeje karstnih pojava 314 NOVI REZULTATI O GLACIJALNOJ EPOSI BALKANSKOGA POLUOSTRVA 325 I Pregled ispitivanja i literature o glacijalnoj eposi Balkanskoga Poluostrva 325 II Novi glacijalni tragovi 331 1. Lovćen 331 Strana 2. Bitoljski Perister 334 3. Šar-planina 335 4. Jakunica 337 5. Slučajevi epigenije u dolinama Vitoše 337 6. Oskudica glečerskih tragova u Balkanu; šljunkovite mase Crnog Osema 340 7. Prokletije 342 III Karakteristike glacijalne epohe 343 1. Vrste starih glečera 343 2. Glacijalna snežna linija 344 3. Glacijalne periode 347 IV Uticaji i posledice glacijalne klime i njenih kolebanja 350 a. Diluvijalni konglomerat, šljunak, terase i stara korita 351 b. Rasprostranjenje lesa i bigra 377 v. Broj terasa i klimska kolebanja glacijalne epohe 379 g. Doline i glacijalna epoha 385 d. Postanak klisura 388 Dragutin Petrović KRAS I GLACIJACIJA (Komentar) 393 MG44

Prikaži sve...
699RSD
forward
forward
Detaljnije

57542) OTVORENI TOKOVI GUSTIH MEŠAVINA , Dejan Komatina , Zadužbina Andrejević Beograd 1997 , Predmet razmatranja su dvofazni fluidi (mesavine vode i cvrstih cestica) sa visokom koncentracijom cvrste faze, usled cega ove mesavine postaju nenjutnovski fluidi. U prvom delu knjige date su teorijske osnove tecenja nenjutnovskih fluida - objasnjeni su osnovni fizicki i reoloski parametri mesavina, nacin odredjivanja reoloskih parametara i navedene jednacine za odredjivanje rasporeda brzine tecenja po dubini, kao i otpora trenja. Konacno, razmotreni su uslovi pod kojima dolazi do promene rezima tecenja iz laminarnog u turbulentan, koristeci “kriticnu” brzinu tecenja, odnosno “kriticnu” vrednost Reynolds-ovog broja. Laboratorijskim ispitivanjima obuhvacena su reoloska merenja (izvedena primenom viskozimetra) i analiza ustaljenog i neustaljenog tecenja mesavina u laboratorijskom kanalu. Za ispitivanja su koriscene mesavine vode i vrlo finih, glinovitih cestica. Na osnovu dobijenih reograma, priblizno je odredjena granicna vrednost koncentracije pri kojoj data mesavina pocinje da pokazuje svojstva nenjutnovskog fluida. Razmotrena je mogucnost primene poznatog Bingham-ovog fluida za reolosko modeliranje mesavina. Na osnovu eksperimenata, izvedenih u laboratorijskom kanalu u ustaljenom hidraulickom rezimu, analiziran je uticaj koncentracije cvrstih cestica, nagiba dna kanala i protoka mesavine na velicinu linijskih otpora. Definisane su relacije izmedju Darcy-Weisbach-ovog koeficijenta trenja i Reynolds-ovog broja na dva nacina: (a) koriscenjem zavisnosti koeficijenta trenja od Reynolds-ovog i Hedström-ovog broja i (b) primenom “prosirenog” Reynolds-ovog broja koji se dobija kada se koristi koeficijent “efektivne” viskoznosti. Na osnovu opita neustaljenog tecenja, kojim je simuliran slucaj trenutnog proloma brane, izvrseno je poredjenje talasa gustih mesavina i “ciste” vode, posebno brzina prostiranja i visina cela talasa. Parametri navedenih eksperimentalnih ispitivanja odredjeni su primenom postupka dimenzione analize. mek povez, format 15,5 x 24 cm , latinica, 110 strana,

Prikaži sve...
400RSD
forward
forward
Detaljnije

Gravitacija i c2-inercija - Milan Nešić. Gravity and c2-inertia - Milton Nesh. Гравитација и ц2 инерција - Милан Нешић. Izdavač: Autor. Mesto izdavanja: Beograd. Godina izdanja: 2020. Povez: broš sa klapnama. Pismo: latinica. Dvojezično: knjiga je paralelno štampana i na srpskom i na engleskom jeziku. Broj strana: 108 + 116 str. Format: 20 x 12,5 cm. Knjiga je samo stajala zaštićena, potpuno je očuvana, kao nova! O knjizi: `Milan Nešić u svojoj novoj knjizi „Gravitacija i c2-inercija” postavlja pitanja kao što su: Da li je teorija relativnosti dovoljno relativna? Kako to da svet postoji? Šta je sa univerzalnim konstantama? itd. Zaista, sam početak, slovo A u teoriji relativnosti jeste čuveno c=const. Drugačije rečeno, brzina svetlosti ista je u svim referentnim sistemima, ona nema osobinu koju pripisujemo fizičkoj veličini koju zovemo brzina, da je relativna, nego je apsolutna! Po Nešiću „na makronivou c=const je objektivno neobjašnjivo”: zbir ma koje brzine v sa brzinom svetlosti u ma kom inercijalnom sistemu reference, v+c=c, opet je c, što je, po Nešiću, elementarna protivrečnost – uprkos onom Ajnštajnovom naučno-popularnom objašnjenju sa vozom i munjama. Zato Hajzenbergove relacije neodređenosti, predlaže Nešić, treba primeniti i na foton ma sa kolike makroskopske daljine dolazio. A ne samo na energetske nivoe u atomu, kao kod Hajzenberga...Koristeći Ajnštajnov čuveni proizvod c2m, gde je m masa, Nešić definiše c2-inerciju kao količnik dejstva hν i priraštaja mase Δm, gde je h Plankova konstanta a ν frekvencija. I dalje kaže da „integralna c2‑inercija sve vasione objašnjava c=const”, te da je u kosmološkim razmerama c2 mera inercije, ne masa. To je pravo objašnjenje za c=const, a ne voz i munje, gde Ajnštajn ipak sabira brzinu voza sa brzinom svetlosti pa kaže da će putnik pre videti munju A jer joj se približava dok od munje B odmiče..` -izvor: S. Ninković, Nova galaksija.

Prikaži sve...
399RSD
forward
forward
Detaljnije

GRAVITACIJA I c2 INERCIJA - Milan Nešić Dvojezično srpsko-englesko izdanje. Izdanje: GRADAC Čačak, 2019. F: 12x23 cm O: 116 str Mek povez, latinica, dvojezično srpsko-englesko izdanje. S3 Knjiga je potpuno N O V A. Dvojezično: knjiga je paralelno štampana i na srpskom i na engleskom jeziku. Broj strana: 108 + 116 str. Format: 20 x 12,5 cm. Knjiga je samo stajala zaštićena, potpuno je očuvana, kao nova! O knjizi: `Milan Nešić u svojoj novoj knjizi „Gravitacija i c2-inercija” postavlja pitanja kao što su: Da li je teorija relativnosti dovoljno relativna? Kako to da svet postoji? Šta je sa univerzalnim konstantama? itd. Zaista, sam početak, slovo A u teoriji relativnosti jeste čuveno c=const. Drugačije rečeno, brzina svetlosti ista je u svim referentnim sistemima, ona nema osobinu koju pripisujemo fizičkoj veličini koju zovemo brzina, da je relativna, nego je apsolutna! Po Nešiću „na makronivou c=const je objektivno neobjašnjivo”: zbir ma koje brzine v sa brzinom svetlosti u ma kom inercijalnom sistemu reference, v+c=c, opet je c, što je, po Nešiću, elementarna protivrečnost – uprkos onom Ajnštajnovom naučno-popularnom objašnjenju sa vozom i munjama. Zato Hajzenbergove relacije neodređenosti, predlaže Nešić, treba primeniti i na foton ma sa kolike makroskopske daljine dolazio. A ne samo na energetske nivoe u atomu, kao kod Hajzenberga...Koristeći Ajnštajnov čuveni proizvod c2m, gde je m masa, Nešić definiše c2-inerciju kao količnik dejstva hν i priraštaja mase Δm, gde je h Plankova konstanta a ν frekvencija. I dalje kaže da „integralna c2‑inercija sve vasione objašnjava c=const”, te da je u kosmološkim razmerama c2 mera inercije, ne masa. To je pravo objašnjenje za c=const, a ne voz i munje, gde Ajnštajn ipak sabira brzinu voza sa brzinom svetlosti pa kaže da će putnik pre videti munju A jer joj se približava dok od munje B odmiče..` -izvor: S. Ninković, Nova galaksija.

Prikaži sve...
380RSD
forward
forward
Detaljnije

1. Henrik Sjenkjevič. `Kroz pustinju i prašumu / H. Sjenkjevič ; preveo Milorad St. Janković.` Klasična dela omladinske književnosti. 27, Beograd: Izdavačka knjižarnica Radomira D. Ćukovića, [b. g.]. 310 str. : ilustr. ; 20 cm. Antikvarna! 2. Harijet Bičer Stou. `Čiča Tomina koliba / Harijeta Bičer Stov ; [preveo Jovan Bogičević ; ilustrovao Vili Plank].` Pingvin ; 3. Sarajevo: Narodna prosvjeta, 1956. 139 str. ; 21 cm. 3. Žil Vern. `Put oko mjeseca.` Pingvin ; 4. Sarajevo: Narodna prosvjeta, 1956. 189 str. ; 21 cm. 4. Ana Frank. `Dnevnik Ane Frank : od 12 juna 1942 - 1 avgusta 1944.` Beograd: Nolit, 1964. 3. izd. 237 str. ; 20 cm. 5. Lujza Mej Alkot. `Devojčice `. Zagreb: Epoha, 1968. 171 str. ; 25 cm. 6. Hans Kristijan Andersen. `Crvene cipelice : priče i bajke.` Zlatna knjiga ; 1. Beograd: BIGZ, 1971. 158 str. : ilustr. ; 21 cm. 7. Mark Tven. `Kraljević i prosjak : priča za hiljade ljudi svih uzrasta / Mark Twain.` Jelen. Zagreb: Mladost, 1972. 3. izd. 273 str. ; 20 cm. 8. Ernest Hemingvej. `Starac i more.` Biblioteka izabranih djela. Sarajevo: Svjetlost, 1974. 96 str. ; 20 cm. 9. Ivo Andrić. `Na Drini ćuprija.` Lektira za II godinu zajedničkih osnova srednjeg usmerenog obrazovanja ; 14. Beograd: Zavod za udžbenike, 1978. 367 str. ; 20 cm. 10. Homer. `Ilijada / izbor, predgovor i priređivanje Miron Flašar.` Lektira za I godinu zajedničkih osnova srednjeg usmerenog obrazovanja ; 12. Beograd: Zavod za udžbenike, 1978. 252 str. ; 20 cm. 11. Džejms Fenimor Kuper. `Posljednji Mohikanac.` Lastavica : Lektira za osnovnu školu : 6. razred. Sarajevo: Veselin Masleša, 1982. 5. izd. 143 str. : ilustr. ; 20 cm. 12. Džek London. `Pustolovka.` Klasična dela omladinske književnosti. 24, Beograd: Prosveta, 1984. 231 str. : ilustr. ; 21 cm. 13. Robert Luis Stivenson. `Otmica Dejvida Balfura.` Klasična dela omladinske književnosti. 21, Beograd: Prosveta, 1984. 239 str. : ilustr. ; 21 cm. 14. Desanka Maksimović. `Oraščići palčići i druge bajke.` Lektira. I razred ; 2. Novi Sad: Školska knjiga, 1997. 62 str. ; 17 cm. Ukupno 4,0 kg. Knjige su uglavnom sa posvetom na predlistu, a u par naslova su uočene dečije žvrljotine.

Prikaži sve...
1,990RSD
forward
forward
Detaljnije

Kvantna mehanika: koncepti i primene Izdavač: Academic Press, San Diego Autor: John D. McGervey Povez: tvrd Broj strana: 408 Veoma dobro očuvana. This re-focused third edition of McGerveys Introduction to Modern Physics is one of the most comprehensive up-to-date textbooks and references sources on quantum mechanics available. This revision fills the gapbetween the mainly descriptive treatments of quantum mechanics, usually found in traditional modern physics texts, and the non-intuitive approaches that treat the subject as a series of mathematical theorems. McGervey achieves this goal with a thoughtfulanalysis of a number of experiments, supplementing these with fully worked examples, and by investigating paradoxes rather than relying on the analysis of a series of dry mathematical theorems. Software, provided with the text, is available for IBM-PC compatible computers with VGA graphics. The software is the basis for the homework problems, many of which have not been used in any form in other books at this level. The text is exceptionally current, a fact reflected in the significant amount of materialbased on articles published in recent years in The American Journal of Physics, The Physical Review, and Science. In all, McGervey provides a lively discussion that will motivate interest and understanding of the subject at the senior undergraduate level. C O N T E N T S: 1. The quantum concept 2. Waves and particles 3. The Schrödinger equation in one dimension 4. Further analysis of one-dimensional bound systems 5. The free particle as a traveling wave 6. Three dimensions and angular momentum 7. Angular momentum and superposition of states 8. The radial Schrödinger equation 9. The hydrogen atom 10. Spin 11. Identical particles 12. Approximate solutions 13. Atomic spectroscopy 14. Time-dependent perturbations and radiation 15. Molecular structure and spectra 16. Quantum statistics Appendix A. Probability and statistics Appendix B. The Boltzmann factor Appendix C. Relativistic dynamics Appendix D. Derivation of the Eigenfunctions of the L operator Appendix E. Solution of the radial equation for the hydrogen atom Appendix F. Numerical solution of the Schrödinger equation Appendix G. `Stable` particles Appendix H. Table of physical constants (K-135)

Prikaži sve...
5,500RSD
forward
forward
Detaljnije

Autor: Milorad Dokić Povez: tvrd Br. strana: 213 Format: 16,5x23,5 - Resursi i ekologija - - Knjiga je istraživački projekat koji opominje, ali i zastrašuje jer dokazuje da se broj zagađivača vodotoka iz dana u dan povećava uprkos postojanju brojnih zakonskih sankcija i inspekcija koje bi trebali to da sprečavaju. Braneći Vrbanju, Dokić brani sve naše rijeke - rekao je direktor Narodne biblioteke „Ivo Andrić“ iz Čelinca, koja je izdavač ove knjige, Momčilo Spasojević. Recenzent knjige prof. dr Drago Branković je naglasio da je karakter ove knjige informativan i edukativan. Prema njegovim riječima knjiga je obogaćena brojnim podacima i vrijednim fotografijama koje potvrđuju da su ljudi nesvjesni vrijednosti čiste životne sredine ugrozili život sadašnje i narednih generacija. Sliv rijeke Vrbanje prostire se na 778 kvadratnih kilometara, Vrbanja je duga 84 km, a na tom prostoru u kojem živi preko 100.000 ljudi evidentirano je čak 1.845 zagađivača. Branković kaže da je ova knjiga priča o vodi i ljudima koji treba da promijenu svoj odnos, prije svega svoju svijest, prema sveukupnom životu i autor baš u tom pravcu daje mnogobrojne ideje i analize. - Ova knjiga je izvanredna analiza stanja resursa i zagađenosti u vrbanjskom slivu. Prema njegovim riječima s jedne strane stoje mnogobrojne prirodne ljepote koji su pravi biseri prirode, a s druge zagađivači koji su crna mrlja našeg društva. Šijaković je podsjetio da je knjiga rezultat djelovanja Udruženja za zaštitu i revitalizaciju sliva rijeke Vrbanje „Vrbanjski biseri“ čiji je Dokić predsjednik - istakao je drugi recenzent knjige sociolog prof. dr Ivan Šijaković. Univerzitetski profesor Miodrag Romić, član „Vrbanjskih bisera“ rekao je da ni jedna rijeka, pa ni Vrbanja, ne pripada ljudima, nego ljudi koji žive na njenim obalama pripadaju rijeci. On je primijetio da autor knjige poziva čitaoce i ljude koji žive na obalama rijeka da proizvedu zdrav život. Autor knjige Milorad Dokić (Čelinac, 1938), kome je ovo prva knjiga, cijeli svoj radni vijek posvetio je privredi i ekologiji. Obavljao je niz istaknutih privrednih i političkih funkcija, a ovom prilikom je naglasio da je cilj knjige da informiše o aktuelnom stanju u životnoj sredini i mobiliše sve one koji su zainteresovani za opstanak na ovim prostorima da zaštite ono što im je najvrednije. - B. MAKSIMOVIĆ.

Prikaži sve...
1,000RSD
forward
forward
Detaljnije

Odlično stanje Svetovi Fotón (od grčke reči φωτός, što znači „svetlost“) je elementarna čestica, kvant elektromagnetnog zračenja (u užem smislu — svetlosti). To je čestica čija je masa mirovanja jednaka nuli, te se najčešće koristi izraz da se kaže da je foton bezmasena čestica. Naelektrisanje fotona je takođe jednako nuli. Spin fotona je 1, tako da foton može biti samo u dva spinska stanja sa helicitetom (odnosno projekcijom spina na smer kretanja) ±1. Helicitetu fotona u klasičnoj elektrodinamici odgovaraju pojmovi kružna desna i leva polarizacija elektromagnetnog talasa. Na foton, kao i na druge elementarne čestice, se odnosi čestično-talasni dualizam, tj. foton istovremeno poseduje i svojstva elementarne čestice i osobine talasa. Fotoni se obično obeležavaju slovom γ ~\gamma, zbog čega ih često nazivaju gama-kvantima (fotoni visokih energija) pri čemu su ti termini praktično sinonimi. Sa tačke gledišta Standardnog modela foton je bozon. Virtuelni fotoni[2] su prenosioci elektromagnetne interakcije koji na taj način obezbeđuju mogućnost uzajamnog delovanja između dva naelektrisanja.[3] Foton Simbol: γ , {\displaystyle ~\gamma ,} ponekad γ 0 , h ν {\displaystyle ~\gamma ^{0},h\nu } LASER.jpg Emitovani fotoni u koherentnom laserskom zraku Grupa: bozoni Učestvuje u interakciji: elektromagnetnoj i gravitacionoj Pronađena: 1923. (konačna potvrda) Masa: 0 Stabilnost: stabilan Naelektrisanje: 0 (<10−32 e[1]) Spin: 1 Istorija Uredi Savremena teorija svetlosti ima dugačku istoriju. Maks Plank je postulirao kvantni karakter zračenja elektromagnetnog polja 1900. godine sa ciljem objedinjenja svojstava toplotnog zračenja.[4] Termin „foton“ uveo je hemičar Gilbert Njutn Luis 1926. godine[5]. U godinama između 1905. i 1917. Albert Ajnštajn je objavio [6][7][8][9] niz radova posvećenih protivurečnosti rezultata eksperimenata i klasične talasne teorije svetlosti, fotoefektu i sposobnosti supstance da bude u toplotnoj ravnoteži sa elektromagnetnim zračenjem. Postojali su pokušaji da se objasni kvantna priroda svetlosti poluklasičnim modelima, u kojima je svetlost i dalje opisivana Maksvelovim jednačinama, bez uzimanja u obzir kvantovanja svetlosti, dok su objektima koji emituju i apsorbuju svetlost pripisavana kvantna svojstva. Bez obzira što su poluklasični modeli uticali na razvoj kvantne mehanike (što dokazuje to da neka tvrđenja poluklasičnih modela i posledice istih i dalje mogu naći u savremenoj kvantnoj teoriji[10]), eksperimenti su potvrdili Ajnštajnova tvrđenja da svetlost ima i kvantnu prirodu, odnosno da se elektromagnetno zračenje prenosi u strogo određenim malim delovima koji se nazivaju kvanti elektromagnetnog zračenja. Kvantovanje kao fenomen nije svojstveno samo elektromagnetnim talasima, već svim oblicima kretanja, pritom ne samo talasnim. Uvođenje pojma fotona je doprinelo stvaranju novih teorija i razvoju fizičkih instrumenata, a takođe je pogodovalo razvoju eksperimentalne i teorijske osnove kvantne mehanike. Na primer, otkriven je laser, Boze-Ajnštajnov kondenzat, formulisana je kvantna teorija polja i data je statistička interpretacija kvantne mehanike. U savremenom Standardnom modelu fizike elementarnih čestica postojanje fotona je posledica toga da su zakoni fizike invarijantni u odnosu na lokalnu simetriju u bilo kojoj tački prostor-vremena. Ovom simetrijom su određena unutrašnja svojstva fotona kao što su naelektrisanje, masa i spin. Među oblastima koje su zasnovane na razumevanju koncepcije fotona ističe se fotohemija, videotehnika, kompjuterizovana tomografija, merenje međumolekulskih rastojanja, itd. Fotoni se takođe koriste kao elementi kvantnih kompjutera i kvantnih uređaja za prenos podataka. Istorija naziva i obeležavanja Uredi Foton je prvobitno od strane Alberta Ajnštajna nazvan „svetlosnim kvantom“.[6] Savremen naziv, koji je foton dobio na osnovu grčke reči φῶς phōs (bio je uveden 1926. godine na inicijativu hemičara Gilberta Luisa, koji je objavio teoriju[11] u kojoj je fotone predstavio kao nešto što se ne može ni stvoriti ni uništiti. Luisova teorija nije bila dokazana i bila je u protivurečnosti sa eksperimentalnim podacima, dok je taj naziv za kvante elektromagnetnog zračenja postao uobičajan među fizičarima. U fizici foton se obično obeležava simbolom γ ~\gamma (po grčkom slovu „gama“). To potiče od oznake za gama zračenje koje je otkiveno 1900. godine i koje se sastojalo iz fotona visoke energije. Zasluga za otkriće gama zračenja, jednog od tri vida (α-, β- i γ-zraci) jonizujuće radijacije, koje su zračili tada poznati radioaktivni elementi, pripada Polu Vilardu, dok su elektromagnetnu prirodu gama-zraka otkrili 1914. godine Ernest Raderford i Edvard Andrejd. U hemiji i optičkom inženjerstvu za fotone se često koristi oznaka h ν , {\displaystyle ~h\nu ,} gde je h {\displaystyle ~h} — Plankova konstanta i ν {\displaystyle ~\nu } (grčko slovo „ni“ koje odgovara frekvenciji fotona). Proizvod ove dve veličine je energija fotona. Istorija razvitka koncepcije fotona Uredi Detaljnije: Svetlost Eksperiment Tomasa Janga u vezi sa interferencijom svetlosti na dva otvora (1805. godine) je pokazao da se svetlost može posmatrati kao talas. Na taj način su bile opovrgnute teorije svetlosti koje su je predstavljale sa čestičnom prirodom. U većini teorija razrađenih do XVIII века, svetlost je bila posmatrana kao mnoštvo čestica. Jedna od prvih teorija te vrste bila je izložena u „Knjizi o optici“ Ibna al Hajtama 1021. godine. U njoj je taj naučnik posmatrao svetlosni zrak u vidu niza malenih čestica koje ne poseduju nikakva kvalitativna čestična svojstva osim energije.[12] Pošto slični pokušaji nisu mogli da objasne pojave kao što su to refrakcija, difrakcija i dvostruko prelamanje zraka, bila je predložena talasna teorija svetlosti, koju su postavili Rene Dekart (1637),[13] Robert Huk (1665),[14] i Kristijan Hajgens (1678).[15] Ipak modeli zasnovani na ideji diskretne prirode svetlosti ostali su dominantni, uostalom zbog autoriteta onih koji su je zastupali, kao što je Isak Njutn.[16] Na početku 19. veka Tomas Jang i Ogisten Žan Frenel su jasno demonstrirali u svojim ogledima pojave interferencije i difrakcije svetlosti, posle čega su sredinom 19. veka talasni modeli postali opštepriznati.[17] Zatim je to učinio Džejms Maksvel 1865. godine u okviru svoje teorije,[18] gde navodi da je svetlost elektromagnetni talas. Potom je 1888. godine ta hipoteza bila potvrđena eksperimentalno Hajnrihom Hercom, koji je otkrio radio-talase.[19] Talasna teorija Maksvela koja je elektromagnetno zračenje posmatrala kao talas električnog i magnetnog polja 1900. godine se činila konačnom. Ipak, neki eksperimenti izvedni kasnije nisu našli objašnjenje u okviru ove teorije. To je dovelo do ideje da energija svetlosnog talasa može biti emitovana i apsorbovana u vidu kvanata energije hν. Dalji eksperimenti su pokazali da svetlosni kvanti poseduju impuls, zbog čega se moglo zaključiti da spadaju u elementarne čestice. U saglasnosti sa relativističkom predstavom bilo koji objekat koji poseduje energiju poseduje i masu, što objašnjava postojanje impulsa kod elektromagnetnog zračenja. Kvantovanjem tog zračenja i apsorpcijom može se naći impuls pojedinih fotona. Talasna teorija Maksvela ipak nije mogla da objasni sva svojstva svetlosti. Prema toj teoriji, energija svetlosnog talasa zavisi samo od njegovog intenziteta, ne i od frekvencije. U stvari rezultati nekih eksperimenata su govorili obrnuto: energija predata atomima od strane svetlosti zavisi samo od frekvencije svetlosti, ne i od njenog intenziteta. Na primer neke hemijske reakcije mogu se odvijati samo u prisutstvu svetlosti čija frekvencija iznad neke granice, dok zračenje čija je frekvencija ispod te granične vrednosti ne može da izazove začetak reakcije, bez obzira na intenzitet. Analogno, elektroni mogu biti emitovani sa površine metalne ploče samo kada se ona obasja svetlošću čija je frekvencija veća od određene vrednosti koja se naziva crvena granica fotoefekta, a energija tih elektrona zavisi samo od frekvencije svetlosti, ne i njenog intenziteta.[20][21] Istraživanja svojstava zračenja apsolutno crnog tela, koja su vršena tokom skoro četrdeset godina (1860—1900),[22] zaveršena su formulisanjem hipoteze Maksa Planka[23][24] o tome da energija bilo kog sistema pri emisiji ili apsorpciji elektromagnetnog zračenja frekvencije ν {\displaystyle ~\nu } može biti promenjena samo za veličinu koja odgovara energiji kvanta E = h ν {\displaystyle ~E=h\nu }, gde je h {\displaystyle ~h} — Plankova konstanta.[25]Albert Ajnštajn je pokazao da takva predstava o kvantovanju energije treba da bude prihvaćena, kako bi se objasnila toplotna ravnoteža između supstance i elektromagnetnog zračenja.[6][7] Na istom osnovu je teorijski bio objašnjen fotoefekat, opisan u radu za koji je Ajnštajn 1921. godine dobio Nobelovu nagradu za fiziku.[26] Nasuprot tome, teorija Maksvela dopušta da elektromagnetno zračenje poseduje bilo koju vrednost energije. Mnogi fizičari su prvobitno pretpostavljali da je kvantovanje energije rezultat nekog svojstva materije koja emituje i apsorbuje elektromagnetne talase. Ajnštajn je 1905. godine pretpostavio da kvantovanje energije predstavlja svojstvo samog elektromagnetnog zračenja.[6] Priznajući tačnost Maksvelove teorije, Ajnštajn je primetio da mnoge nesuglasice sa eksperimentalnim rezultatima mogu biti objašnjene ako je energija svetlosnog talasa lokalizovana u kvantima, koji se kreću nezavisno jedni od drugih, čak ako se talas neprekidno prostire u prostor-vremenu.[6] U godinama između 1909.[7] i 1916,[9] Ajnštajn je pokazao, polazeći od tačnosti zakona zračenja apsolutno crnog tela, da kvant energije takođe mora posedovati impuls p = h / λ {\displaystyle ~p=h/\lambda },[27] . Impuls fotona bio je otkrio eksperimentalno[28][29]Artur Kompton, za šta je dobio Nobelovu nagradu za fiziku 1927. godine. Ipak, pitanje usaglašavanja talasne teorije Maksvela sa eksperimentalnim činjenicama je ostalo otvoreno.[30] Niz autora je utvrdio da se emisija i apsorpcija elektromagnetnih talasa dešavaju u porcijama, kvantima, dok je proces njihovog prostiranja neprekidan. Kvantni karakter pojava kao što su zračenje i apsorpcija dokazuje da je nemoguće da mikrosistem poseduje proizvoljnu količinu energije. Korpuskularne predstave su dobro usaglašene sa eksperimentalno posmatranim zakonitostima zračenja i apsorpcije elektromagnetnih talasa, uključujući toplotno zračenje i fotoefekat. Ipak, po mišljenju predstavnika onih koji su zastupali taj pravac eksperimentalni podaci su išli u prilog tome da kvantna svojstva elektromagnetnog talasa ne bivaju ispoljena pri prostiranju, rasejanju i difrakciji, ukoliko pritom ne dolazi do gubitka energije. U procesima prostiranja elektromagnetni talas nije lokalizovan u određenoj tački prostora, ponaša se kao celina i opisuje Maksvelovim jednačinama. [31] Rešenje je bilo pronađeno u okviru kvantne elektrodinamike. Rani pokušaji osporavanja Uredi Do 1923. godine većina fizičara je odbijalo da prihvati ideju da elektromagnetno zračenje poseduje kvantna svojstva. Umesto toga oni su bili skloni objašnjavanju ponašanja fotona kvantovanjem materije, kao na primer u Borovoj teoriji za atom vodonika. Mada su svi ovi poluklasični modeli bili samo približno tačni i važili samo za proste sisteme, oni su doveli do stvaranja kvantne mehanike. Kao što je pomenuto u nobelovskoj lekciji Roberta Milikena, predviđanja koja je Ajnštajn napravio 1905. godine bila su proverena eksperimentalno na nekoliko nezavisnih načina u prve dve decenije 20. veka[32]. Ipak, Komptonovog eksperimenta[28] ideja kvantne prirode elektromagnetnog zračenja nije bila priznata među svim fizičarima (pogledati Nobelovske lekcije Vilhelma Vina,[22] Maksa Plank[24] i Roberta Milikena[32]), što je bilo povezano sa uspesima talasne teorije svetlosti Maksvela. Neki fizičari su smatrali da kvantovanje energije u procesima emisije i apsorpcije svetlosti bilo posledica nekih svojstava supstance koja tu svetlost zrači ili apsorbuje. Nils Bor, Arnold Zomerfeld i drugi su razrađivali modele atoma sa energetskim nivoima koji su objašnjavali spektar zračenja i apsorpcije kod atoma i bili u saglasnosti sa eksperimentalno utvrđenim spektrom vodonika[33] (ipak, dobijanje adekvatnog spektra drugih atoma ovi modeli nisu omogućavali). Samo rasejanje fotona slobodnim elektronima, koji po tadašnjem shvatanju nisu posedovali unutrašnju strukturu, nateralo je mnoge fizičare da priznaju kvantnu prirodu svetlosti. Ipak čak posle eksperimenata koje je načinio Kompton, Nils Bor, Hendrik Kramers i Džon Slejter preduzeli su poslednji pokušaj spašavanja klasičnog modela talasne prirode svetlosti, bez uračunavanja kvantovanja, objavivši BKS teoriju.[34] Za objašnjavanje eksperimentalnih činjenica predložili su dve hipoteze[35]: 1. Energija i impuls se održavaju samo statistički (po srednjoj vrednosti) pri uzajmnom delovanju materije i zračenja. U određenim eksperimentalnim procesima kao što su to emisija i apsorpcija, zakoni održanja energije i impulsa nisu ispunjeni. Ta pretpostavka je objašnjavala stepeničastu promenu energije atoma (prelazi na energetskim nivoima) sa neprekidnošću promene energije samog zračenja. 2. Mehanizam zračenja poseduje specifičan karakter. Spontano zračenje posmatrano je kao zračenje stimulisano „virtuelnim“ elektromagnetnim poljem. Ipak eksperimenti Komptona su pokazali da se energija i impuls potpuno održavaju u elementarnim procesima, a takođe da se njegov račun promene učestalosti padajućeg fotona u komptonovskom rasejanju ispunjava sa tačnošću do 11 znakova. Ipak krah BKS modela inspirisao je Vernera Hajzenberga na stvaranje matrične mehanike.[36] Jedan od eksperimenata koji su potvrdili kvantnu apsorpciju svetlosti bio je ogled Valtera Bote, koji je sproveo 1925. godine. U tom ogledu tanki metalni sloj je bio izložen rendgenskom zračenju malog intenziteta. Pritom je on sam postao izvor slabog zračenja. Polazeći od klasičnih talasnih predstava to zračenje se u prostoru mora raspoređivati ravnomerno u svim pravcima. U tom slučaju dva instrumenta, postavljena levo i desno od metalnog sloja, trebalo je da ga zabeleže istovremeno. Ipak, rezultat ogleda je pokazivao suprotno: zračenje su beležili čas levi, čas desni instrument i nikad oba istovremeno. To je značilo da se apsorpcija odvija porcijama, tj. kvantima. Ogled je na taj način potvrdio fotonsku teoriju zračenja i postao samim tim još jednim eksperimentalnim dokazom kvantnih svojstava elektromagnetnog zračenja[37]. Neki fizičari[38] su nastavili da razrađuju poluklasične modele, u kojim elektromagnetno zračenje nije smatrano kvantnim, ali pitanje je dobilo svoje rešenje samo u okviru kvantne mehanike. Ideja korišćenja fotona pri objašnjavanju fizičkih i hemijskih eksperimenata postala je opštepriznata u 70-im godinama 20. veka. Sve poluklasične teorije većina fizičara je smatrala osporenim u 70-im i 80-im godinama u eksperimentima.[39] Na taj način, ideja Planka o kvantnim svojstvima elektromagnetnog zračenja i na osnovu nje razvijena Ajnštajnova hipoteza smatrane su dokazanim. Fizička svojstva fotona Uredi Fejnmanov dijagram na kojem je predstavljena razmena virtuelnim fotonom (označen na slici talasastom linijom) između pozitrona i elektrona. Foton je čestica bez mase mirovanja. Spin fotona jednak je 1 (čestica je bozon), ali zbog mase mirovanja jednakoj nuli značajnijom karakteristikom se javlja projekcija spina čestice na pravac kretanja. Foton može biti samo u dva spinska stanja ± 1 {\displaystyle \pm 1}. Tom svojstvu u klasičnoj elektrodinamici odgovara elektromagnetni talas.[5] Masa mirovanja fotona smatra se jednakom nuli, što se zasniva na eksperimentu i teorijskim principima. Zbog toga je brzina fotona jednaka brzini svetlosti. Ako fotonu pripišemo relativističku masu (termin polako izlazi iz upotrebe) polazeći od jednakosti m = E c 2 {\displaystyle m={\tfrac {E}{c^{2}}}} vidimo da ona iznosi m = h ν c 2 {\displaystyle m={\tfrac {h\nu }{c^{2}}}}. Foton je sam svoja antičestica).[40] Foton se ubraja u bozone. Učestvuje u elektromagnetnoj i gravitacionoj interakciji.[5] Foton ne poseduje naelektrisanje i ne raspada se spontano u vakuumu, stabilan je. Foton može imati jedno od dva stanja polarizacije i opisuje se sa tri prostorna parametra koji sastavljaju talasni vektor koji određuje njegovu talasnu dužinu λ {\displaystyle ~\lambda } i smer prostiranja. Fotoni nastaju u mnogim prirodnim procesima, na primer, pri ubrzanom kretanju naelektrisanja, pri prelazu atoma ili jezgra iz pobuđenog u osnovno stanje manje energije, ili pri anihilaciji para elektron-pozitron. Treba primetiti da pri anihilaciji nastaju dva fotona, a ne jedan, pošto u sistemu centra mase čestica koje se sudaraju njihov rezultujući impuls jednak nuli, a jedan dobijeni foton uvek ima impuls različit od nule. Zakon održanja impulsa stoga traži nastanak bar dva fotona sa ukupnim impulsom jednakom nuli. Energija fotona, a, samim tim i njihova frekvencija, određena je zakonom održanja energije. Pri obrnutim procesima- pobuđivanju atoma i stvaranju elektron-pozitron para dolazi do apsorpcije fotona. Ovaj proces je dominantan pri prostiranju gama-zraka visokih energija kroz supstancu. Ako je energija fotona jednaka E {\displaystyle ~E}, onda je impuls p → {\displaystyle {\vec {p}}}povezan sa energijom jednakošću E = c p {\displaystyle ~E=cp}, gde je c {\displaystyle ~c} — brzina svetlosti (brzina kojom se foton uvek kreće kao čestica bez mase). Radi upoređivanja za čestice koje poseduju masu mirovanja, veza mase i impulsa sa energijom određena je formulom E 2 = c 2 p 2 + m 2 c 4 {\displaystyle ~E^{2}=c^{2}p^{2}+m^{2}c^{4}}, što pokazuje specijalna teorija relativnosti.[41] U vakuumu energija i impuls fotona zavise samo od njegove frekvencije ν {\displaystyle ~\nu } (ili, što je ekvivalentno prethodnom, od njegove talasne dužine λ = c / ν {\displaystyle ~\lambda =c/\nu }): E = ℏ ω = h ν {\displaystyle E=\hbar \omega =h\nu }, p → = ℏ k → {\displaystyle {\vec {p}}=\hbar {\vec {k}}}, Odatle sledi da je impuls jednak: p = ℏ k = h λ = h ν c {\displaystyle p=\hbar k={\frac {h}{\lambda }}={\frac {h\nu }{c}}}, gde je ℏ {\displaystyle ~\hbar } — Dirakova konstanta, jednaka h / 2 π {\displaystyle ~h/2\pi }; k → {\displaystyle {\vec {k}}} — talasni vektor i k = 2 π / λ {\displaystyle ~k=2\pi /\lambda } — njegova veličina (talasni broj); ω = 2 π ν {\displaystyle ~\omega =2\pi \nu } — ugaona frekvencija. Talasni vektor k → {\displaystyle {\vec {k}}} određuje smer kretanja fotona. Spin fotona ne zavisi od njegove frekvencije. Klasične formule za energiju i impuls elektromagnetnog zračenja mogu biti dobijeni polaženjem od predstava o fotonu. Na primer pritisak zračenja postoji usled impulsa koji fotoni predaju telu pri njihovoj apsorpciji. Zaista, pritisak je sila koja deluje na jediničnu površinu, a sila je jednaka promrni impulsa u vremenu[42], pa se otuda javlja taj pritisak. Korpuskularno-talasni dualizam i princip neodređenosti Uredi Detaljnije: Princip dualnosti talas-čestica i Hajzenbergov princip neodređenosti Fotonu je svojstven korpuskularno-talasni dualizam. Sa jedne strane foton pokazuje svojstva talasa u pojavama difrakcije i interferencije u slučaju da su karakteristične veličine barijere uporedive sa talasnom dužinom fotona. Na primer, pojedini fotoni prolazeći kroz dvostruki otvor stvaraju na pozadini interferencionu sliku koja se može opisati Maksvelovim jednačinama[43]. Ipak eksperimenti pokazuju da se fotoni emituju i apsorbuju u celini objektima koje imaju dimenzije mnogo manje od talasne dužine fotona, (na primer atomima) ili se uopšte mogu smatrati tačkastim (na primer elektronima). Na taj način fotoni se u procesu emitovanja i apsorpcije zračenja ponašaju kao čestice. U isto vreme ovakav opis nije dovoljan; predstava o fotonu kao tačkastoj čestici čija je trajektorija određena elektromagnetnim poljem biva opovrgnuta korelacionim eksperimentima sa pomešanim stanjima fotona (pogledati Paradoks Ajnštajn-Podolskog-Rozena). Misaoni eksperiment Hajzenberga o određivanju mesta na kojem se nalazi elektron (obojen plavo) pomoću gama-zračnog mikroskopa visokog uvećanja. Padajući gama-zraci (prikazani zelenom bojom) rasejavaju se na elektronu i ulaze v aperturni ugao mikroskopa θ. Rasejani gama-zraci prikazani su na slici crvenom bojom. Klasična optika pokazuje da položaj elektrona može biti određen samo sa ograničenom tačnošću vrednosti Δx, koja zavisi od ugla θ i od talasne dužine λ upadnih zraka. Ključnim elementom kvantne mehanike javlja se Hajzenbergov princip neodređenosti, koji ne dozovoljava da se istovremeno tačno odrede prostorne koordinate čestice i njen impuls u tim koordinatama.[44] Važno je primetiti da je kvantovanje svetlosti i zavisnost energije i impulsa od frekvencije neophodno za ispunjavanje principa neodređenosti primenjenog na naelektrisanu masivnu česticu. Ilustracijom toga može poslužiti poznat misaoni eksperiment sa idealnim mikroskopom koji određuje prostorne koordinate elektrona obasjavanjem istog svetlošću i registrovanjem rasejane svetlosti (gama-mikroskop Hajzenberga). Položaj elektrona može biti određen sa tačnošću Δ x {\displaystyle ~\Delta x}, zavisnom od samog mikroskopa. Polaženjem od predstava klasične optike: Δ x ∼ λ sin ⁡ θ , {\displaystyle \Delta x\sim {\frac {\lambda }{\sin \theta }},} gde je θ {\displaystyle ~\theta } — aperturni ugao mikroskopa. Na taj način se neodređenost koordinate Δ x {\displaystyle ~\Delta x} može učiniti jako malom smanjenjem talasne dužine λ {\displaystyle ~\lambda } upadnih zraka. Ipak posle rasejanja elektron dobija neki dodatni impuls, pri čemu je njegova neodređenost jednaka Δ p {\displaystyle ~\Delta p}. Ako upadno zračenje ne bi bilo kvantnim, ta neodređenost bi mogla postati jako mala smanjenjem intenziteta zračenja. Talasna dužina i intenzitet upadne svetlosti mogu se menjati zavisno jedan od drugoga. Kao rezultat u odsutstvu kvantovanja svetlosti postalo bi moguće istovremeno sa velikom tačnošću odrediti položaj elektrona u prostoru i njegov impuls, što se protivi principu neodređenosti. Nasuprot tome, Ajnštajnova formula za impuls fotona u potpunosti zadovoljava princip neodređenosti. S obzirom da se foton može rasejati u bilo kom pravcu u granicama ugla θ {\displaystyle ~\theta }, neodređenost peredatog elektronu impulsa jednaka je: Δ p ∼ p ϕ sin ⁡ θ = h λ sin ⁡ θ . {\displaystyle \Delta p\sim p_{\mathrm {\phi } }\sin \theta ={\frac {h}{\lambda }}\sin \theta .} Posle množenja prvog izraza drugim dobija se: Δ x Δ p ∼ h {\displaystyle \Delta x\Delta p\,\sim \,h}. Na taj način ceo svet je kvantovan: ako supstanca podleže zakonima kvantne mehanike onda to mora biti slučaj i sa fizičkim poljem, i obrnuto [45]. Analogno, princip neodređenosti fotonima zabranjuje tačno mernje broja n {\displaystyle ~n} fotona u elektromagnetnom talasu i fazu φ {\displaystyle ~\varphi } tog talasa: Δ n Δ φ > 1. {\displaystyle ~\Delta n\Delta \varphi >1.} I fotoni, i čestice supstance (elektroni, nukleoni, atomska jezgra, atomi itd.), koje poseduju masu mirovanja pri prolasku kroz dva blisko postavljena uska otvora daju slične interferencione slike. Za fotone se ta pojava može opisati Maksvelovim jednačinama, dok se za masivne čestice koristi Šredingerova jednačina. Moglo bi se pretpostaviti da su Maksvelove jednačine samo uprošćen oblik Šredingerove jednačine za fotone. Ipak sa tim se ne slaže većina fizičara[46][47]. S jedne strane te jednačine se razlikuju u matematičkom smislu: za razliku od Maksvelovih jednačina (koje opisuju polje tj. stvarne funkcije koordinata i vremena), Šredingerova jednačina je kompleksna (njeno rešenje je polje koje uopšteno govoreći predstavlja kompleksnu funkciju). S druge stane pojam verovatnoće talasne funkcije koji ulazi u Šredingerovu jednačinu ne može biti primenjen na foton.[48] Foton je čestica bez mase mirovanja, zato on ne može biti lokalizovan u prostoru bez uništenja. Formalno govoreći, foton ne možet imati koordinatno sopstveno stanje | r ⟩ {\displaystyle |\mathbf {r} \rangle } i na taj način običan Hajzenbergov princip neodređenosti Δ x Δ p ∼ h {\displaystyle \Delta x\Delta p\,\sim \,h} se na njega ne može primenti. Bili su predloženi izmenjeni oblici talasne funkcije za fotone,[49][50][51][52] ali oni nisu postali opštepriznati. Umesto toga rešenje se traži u kvantnoj elektrodinamici. Boze-Ajnštajnov model fotonskog gasa Uredi Detaljnije: Boze-Ajnštajnova statistika Kvantna statistika primenjna na čestice sa celobrojnim spinom bila je predložena 1924. godine od strane indijskog fizičara Bozea za svetlosne kvante i proširena zahvaljujući Ajnštajnu na sve bozone. Elektromagnetno zračenje unutar neke zapremine može se posmatrati kao idealni gas koji se sastoji iz mnoštva fotona između kojih praktično ne postoji interakcija. Termodinamička ravnoteža tog fotonskog gasa dostiže se putem interakcije sa zidovima. Ona nastaje kada zidovi emituju onoliko fotona u jedinici vremena koliko i apsorbuju.[53] Pritom se unutar zapremine postoji određena raspodela čestica po energijama. Boze je dobio Plankov zakon zračenja apsolutno crnog tela, uopšte ne koristeći elektrodinamiku, samo modifikujući račun kvantnih stanja sistema fotona u datoj fazi.[54] Tako je bilo ustanovljeno da broj fotona u apsolutno crnoj oblasti, energija kojih se proteže na intervalu od ε {\displaystyle ~\varepsilon } do ε + d ε , {\displaystyle \varepsilon +d\varepsilon ,} jednak:[53] d n ( ε ) = V ε d ε 2 π 2 ℏ 3 c 3 ( e ε / k T − 1 ) , {\displaystyle dn(\varepsilon )={\frac {V\varepsilon d\varepsilon ^{2}}{\pi ^{2}\hbar ^{3}c^{3}(e^{\varepsilon /kT}-1)}},} gde je V {\displaystyle ~V} — njena zapremina, ℏ {\displaystyle ~\hbar } — Dirakova konstanta, T {\displaystyle ~T} — temperatura ravnotežnog fotonskog gasa (ekvivalentna temperaturi zidova). U ravnotežnom stanju elektromagnetno zračenje apsolutno crnog tela se opisuje istim termodinamičkim parametrima kao i običan gas: zapreminom, temperaturom, energijom, entropijom i dr. Zračenje vrši pritisak P {\displaystyle ~P} na zidove pošto fotoni poseduju impuls.[53] Veza tog pritiska i temperature izražena je jednačinom stanja fotonskog gasa: P = 1 3 σ T 4 , {\displaystyle P={\frac {1}{3}}\sigma T^{4},} gde je σ {\displaystyle ~\sigma } — Štefan-Bolcmanova konstanta. Ajnštajn je pokazao da je ta modifikacija ekvivalentna priznavanju toga da se dva fotona principijelno ne mogu razlikovati, a među njima postoji „tajanstvena nelokalizovana interakcija“,[55][56] sada shvaćena kao potreba simetričnosti kvantnomehaničkih stanja u odnosu na preraspodelu čestica. Taj rad doveo je do stvaranja koncepcije koherentnih stanja i pogodovao stvaranju lasera. U istim člancima Ajnštajn je proširio predstave Bozea na elementarne čestice sa celobrojnim spinom (bozone) i predvideo pojavu masovnog prelaza čestica bozonskog gasa u stanje sa minimalnom energijom pri smanjenju temperature do nekog kritičnog nivoa (pogledati Boze-Ajnštajnova kondenzacija). Ovaj efekat je 1995. godine posmatran eksperimentalno, a 2001. autorima eksperimenta bila je uručena Nobelova nagrada.[57] Po savremenom shvatanju bozoni, u koje se ubraja i foton, podležu Boze-Ajnštajnovoj statistici, a fermioni, na primer elektroni, Fermi-Dirakovoj statistici.[58] Spontano i prinudno zračenje[59] Uredi Detaljnije: Laser Ajnštajn je 1916. godine pokazao da Plankov zakon zračenja za apsolutno crno telo može biti izveden polaženjem od sledećih poluklasičnih predstava: Elektroni se u atomima nalaze na energetskim nivoima; Pri prelazu elektrona među tim nivoima atom emituje ili apsorbuje foton. Osim toga smatralo se da emitovanje i apsorpcija svetlosti atomima dešava nezavisno jedno od drugoga i da toplotna ravnoteža u sistemu biva održana usled interakcije sa atomima. Posmatrajmo zapreminu koja se nalazi u toplotnoj ravnoteži i koja je ispunjena elektromagnetnim zračenjem koje može biti emitovano i apsorbovana zidivima koji je ograničavaju. U stanju toplotne ravnoteže spektralna gustina zračenja je ρ ( ν ) {\displaystyle ~\rho (\nu )} i zavisi od frekvencije fotona ν {\displaystyle ~\nu } dok po srednjoj vrednosti ne zavisi od vremena. To znači da verovatnoća emitovanja fotona proizvoljnog fotona mora biti jednaka verovatnoći njegove apsorpcije.[8] Ajnštajn je počeo da traži proste uzajamne veze među brzinom apsorpcije i emitovanja. U njegovom modelu brzina R j i {\displaystyle ~R_{ji}} apsorpcije fotona frekvencije ν {\displaystyle ~\nu } i prelaza atoma sa energetskog nivoa E j {\displaystyle ~E_{j}} na nivo više energije E i {\displaystyle ~E_{i}} je proporcionalna broju N j {\displaystyle ~N_{j}} atoma sa energijom E j {\displaystyle ~E_{j}} i spektralne gustine zračenja ρ ( ν ) {\displaystyle ~\rho (\nu )} za okolne fotone iste frekvencije: R j i = N j B j i ρ ( ν ) {\displaystyle ~R_{ji}=N_{j}B_{ji}\rho (\nu )}. Ovde je B j i {\displaystyle ~B_{ji}} konstanta brzine apsorpcije. Za ostvarenje suprotnog procesa postoji dve mogućnosti: spontano zračenje fotona i vraćanje elektrona na niži energetski nivo usled interakcije sa slučajnim fotonom. U saglasnosti sa gore opisanim prilazom odgovarajuća brzina R i j {\displaystyle ~R_{ij}}, koja karakteriše zračenje sistema fotona frekvencije ν {\displaystyle ~\nu } i prelaz atoma sa višeg energetskog nivoa E i {\displaystyle ~E_{i}} na nivo manje energije E j {\displaystyle ~E_{j}}, jednaka je: R i j = N i A i j + N i B i j ρ ( ν ) {\displaystyle ~R_{ij}=N_{i}A_{ij}+N_{i}B_{ij}\rho (\nu )}. Ovde je A i j {\displaystyle ~A_{ij}} — koeficijent spontanog zračenja, B i j {\displaystyle ~B_{ij}} — koeficijent odgovoran za prinudno zračenje pod dejstvom slučajnih fotona. Pri termodinamičkoj ravnoteži broj atoma u energetskom stanju i {\displaystyle ~i} i j {\displaystyle ~j} po srednjoj vrednosti mora biti konstantan u vremenu, odakle sledi da veličine R j i {\displaystyle ~R_{ji}} i R i j {\displaystyle ~R_{ij}} moraju biti jednake. Osim toga, po analogiji sa Bolcmanovom statistikom: N i N j = g i g j exp ⁡ E j − E i k T {\displaystyle {\frac {N_{i}}{N_{j}}}={\frac {g_{i}}{g_{j}}}\exp {\frac {E_{j}-E_{i}}{kT}}}, gde je g i , j {\displaystyle ~g_{i,j}} — broj linearno nezavisnih rešenja koje odgovaraju datom kvantnom stanju i energiji energetskog nivoa i {\displaystyle ~i} i j {\displaystyle ~j}, E i , j {\displaystyle ~E_{i,j}} — energija tih nivoa, k {\displaystyle ~k} — Bolcmanova konstanta, T {\displaystyle ~T} — temperatura sistema. Iz rečenog sledi zaključak da g i B i j = g j B j i {\displaystyle ~g_{i}B_{ij}=g_{j}B_{ji}} i: A i j = 8 π h ν 3 c 3 B i j {\displaystyle A_{ij}={\frac {8\pi h\nu ^{3}}{c^{3}}}B_{ij}}. Koeficijenti A {\displaystyle ~A} i B {\displaystyle ~B} nazivaju se Ajnštajnovim koeficijentima.[60] Ajnštajn nije uspeo gustinom da objasni sve ove jednačine ali je smatrao da će ubuduće biti moguće da se pronađu koeficijenti A i j {\displaystyle ~A_{ij}}, B j i {\displaystyle ~B_{ji}} i B i j {\displaystyle ~B_{ij}}, kada „mehanika i elektrodinamika budu izmenjene tako da će odgovarati kvantnoj hipotezi“.[61] I to se stvarno dogodilo. Pol Dirak je 1926. godine dobio konstantu B i j {\displaystyle ~B_{ij}}, koristeći poluklasični metod,[62] a 1927. godine uspešno je našao sve te konstante polazeći od osnovnih principa kvantne teorije.[63][64] Taj rad je postao osnovom kvantne elektrodinamike, tj. teorije kvantovanja elektromagnetnog polja. Prilaz Diraka, nazvan metodom sekundarnog kvantovanja, postao je jednim od osnovnih metoda kvantne teorije polja.[65][66][67] Treba primetiti da su u ranoj kvantnoj mehanici samo čestice supstance, a ne i elektromagno polje, smatrane kvantnomehaničkim. Ajnštajn je bio uznemiren time da mu se teorija činila nepotpunom, još više pošto nije mogla da opiše smer spontanog zračenja fotona. Prirodu kretanja svetlosnih čestica sa aspekta verovatnoće najpre je razmotrio Isak Njutn u svom objašnjenju pojave dvostrukog prelamanja zraka (efekat razlaganja svetlosnog zraka na dve komponente u anizotropnim sredinama) i uopšteno govoreći pojave razlaganja svetlosnog zraka na granici dve sredine na odbijeni i prelomljeni zrak. Njutn je pretpostavio da „skrivene promenljive“, koje karakterišu svetlosne čestice određuju u koju od graničnih sredina će otići data čestica.[16] Analogno se i Ajnštajn, počevši sa distanciranjem od kvantne mehanike, nadao nastanku opštije teorije mikrosveta u kojoj nema mesta slučajnosti.[30] Treba primetiti da Maksom Bornom uvedena interpretacija talasnih funkcija preko verovatnoće[68][69] bila stimulisana poznim radom Ajnštajna koji je tražio opštu teoriju.[70] Sekundarno kvantovanje Uredi Detaljnije: Kvantna teorija polja i Sekundarno kvantovanje Različiti elektromagnetni moduli (na primer označeni na slici) mogu biti posmatrani kao nezavisni kvantni harmonijski oscilatori. Svaki foton odgovara jediničnoj energiji E=hν. Piter Debaj dobio je 1910. godine Plankov zakon zračenja za apsolutno crno telo polazeći od relativno jednostavne pretpostavke.[71] On je razložio elektromagnetno polje na Furijeov red i pretpostavio da energija svakog modula celobrojni delilac veličine h ν , {\displaystyle ~h\nu ,} gde ν {\displaystyle ~\nu } je odgovarajuća frekvencija. Geometrijska suma dobijenih modula predstavlja Plankov zakon zračenja. Ipak pokazalo se da je nemoguće korišćenjem datog prilaza dobiti tačan oblik formule za fluktacije energije toplotnog zračenja. Rešenje ovog problema pronašao je Ajnštajn 1909. godine.[7] Maks Born, Verner Hajzenberg i Paskval Jordan su 1925. godine dali nešto drugačiju interpretaciju Debajeve metode.[72] Koristeći klasične može se pokazati da je Furijeov red elektromagnetnog polja sastoji iz mnoštva ravnih talasa pri čemu svaki od njih odgovara svom talasnom vektoru i svojem stanju polarizacije što je ekvivalentno mnoštvu harmonijskih oscilatora. Sa aspekta kvantne mehanike energetski nivoi tih oscilatora bivaju određeni odnosom E = n h ν , {\displaystyle ~E=nh\nu ,} gde je ν {\displaystyle ~\nu } frekvencija oscilatora. Principijelno novim korakom postalo je to da je modul sa energijom E = n h ν {\displaystyle ~E=nh\nu } posmatran ovde kao stanje od n {\displaystyle ~n} fotona. Takav metod omogućio je dobijanje ispravnog oblika formule za fluktacije energije zračenja apsolutno crnog tela. U kvantnoj teoriji polja verovatnoća da dođe do nekog događaja izrčunava se kao kvadrat modula sume amplituda verovatnoće (kompleksnih brojeva) svih mogućih načina na koji se dati događaj može realizovati kao na Fejnmanovom dijagramu, postavljenom ovde. Pol Dirak je otišao još dalje.[63][64] On je posmatrao interakciju između naelektrisanja i elektromagnetnog polja kao mali poremećaj koji izaziva prelaze u fotonskim stanjima menjajući broj fotona u modulima pri održanju celookupne energje i impulsa sistema. Dirak je pošavši od toga uspeo da dobije Ajnštajnoove koeficijente A i j {\displaystyle ~A_{ij}} i B i j {\displaystyle ~B_{ij}} iz prvih principa i pokazao da je Boze-Ajnštajnova statistika za fotone prirodna posledica korektnog kvantovanja elektromagnetnog polja (sam Boze se kretao u suprotnom smeru — on je dobio Plankov zakon zračenja za apsolutno crno telo postuliranjem statističke raspodele Boze — Ajnštajna). U to doba još nije bilo poznato da svi bozoni, uključujući i fotone podležu Boze-Ajnštajnovoj statistici. Dirakova teorija poremećaja uvodi pojam virtuelnog fotona, kratkotrajnog prelaznog stanja elektromagnetnog polja. Elektrostatička i magnetna interakcija ostvaruje se putem takvih virtualnih fotona. U takvim kvantnim teorijama polja amplituda verovatnoće posmatranih događaja se računa sumiranjem po svim mogućim prelaznim putevima, uključujući čak nefizičke; pošto virtuelni fotoni ne moraju zadovoljavati disperzioni odnos E = p c {\displaystyle ~E=pc}, ispunjen za fizičke čestice bez mase, i mogu imati dodatna polarizaciona stanja (kod realnih fotona postoje dva stanja polarizacije dok kod virtualnih — tri ili četiri, u zavisnosti od korišćene kalibracije). Mada virtuelne čestice pa i virtuelni fotoni ne mogu biti posmatrani neposredno,[73] oni unose merljiv udeo u verovatnoću posmatranih kvantnih stanja. Šta više, račun po drugom i višim redovima teorije poremećaja ponekad dovodi do beskonačno velikih vrednosti za neke fizičke veličine. Druge virtuelne čestice takođe mogu doprineti vrednosti sume. Na primer, dva fotona mogu interagovati posredstvom virtuelnog ele Marija Juranji Fotoni Fizika

Prikaži sve...
490RSD
forward
forward
Detaljnije
Nazad
Sačuvaj