Filteri
close
Tip rezultata
Svi rezultati uključeni
keyboard_arrow_down
Kategorija
Sve kategorije
keyboard_arrow_down
Od
RSD
Do
RSD
Sortiraj po
keyboard_arrow_down
Objavljeno u proteklih
keyboard_arrow_down
Sajtovi uključeni u pretragu
Svi sajtovi uključeni
keyboard_arrow_down

Pratite promene cene putem maila

  • Da bi dobijali obaveštenja o promeni cene potrebno je da kliknete Prati oglas dugme koje se nalazi na dnu svakog oglasa i unesete Vašu mail adresu.
1-7 od 7 rezultata

Broj oglasa

Prikaz

format_list_bulleted
view_stream
1-7 od 7
1-7 od 7 rezultata

Prikaz

format_list_bulleted
view_stream

Režim promene aktivan!

Upravo ste u režimu promene sačuvane pretrage za frazu .
Možete da promenite frazu ili filtere i sačuvate trenutno stanje

Aktivni filteri

  • Tag

    Prirodne nauke
  • Tag

    Udžbenici i lektire
  • Cena

    2,500 din - 7,999 din

1. Citanka - Vulkan znanje - 2019 2. Gramatika - Vulkan znanje - 2020 3. Radna sveska - Vulkan znanje - 2020 4. Matematika - Matematiskop -2019 5. Matematika zbirka - Matematiskop -2019 6. Fizika - Saznanje - 2019 7. Fizika praktikum - Saznanje - 2019 8. Informatika i racunarstvo - Vulkan znanje - 2019 9. Tehnika i tehnologija - Vulkan znanje - 2020 10. Biologija - Vulkan znanje - 2019 11. Geografija - Bigz - 2019 12. Likovna kultura - Bigz - 2019 13. Istorija - Klett - 2019 14. Muzicka kultura - Eduka - 2019 15. Engleski jezik - Logos - 2019 16. Radna sveska za Engleski - Logos - 2019 17. Francuski jezik - Klett - 2019 18. Radna sveska za Francuski - Klett - 2019 19. Komplet za tehnicko Neke knjige su sa vidljivim znakovima koriscenja, neke su kao nove. Na vecini je podvlaceno markerom. Sve su kompletne

Prikaži sve...
4,000RSD
forward
forward
Detaljnije

DOJČINOVIĆ P. IVAN , PURIĆ M.JAGOŠ Ovaj udžbenik je nastao na temelju višedecenijskog iskustva u držanju nastave iz predmeta Fizika atoma na smeru Teorijska i eksperimentalna fizika Fizičkog fakulteta Univerziteta u Beogradu. Udžbenik se grubo može podeliti u dva dela. U prvom delu data je fizika atoma zasnovana na rezultatima klasične fizike, uključujući Borov model atoma (prva tri poglavlja), a u drugom delu je opisana fizika atoma zasnovana na kvantnoj mehanici, uključujući i Dirakovu formulu fine strukture. U četvrtom poglavlju dat je kratak uvod u kvantnu mehaniku, sa naglaskom na formalizmu koji se direktno koristi u fizici atoma. Struktura energetskih nivoa atoma vodonika i vodoniku sličnih atoma i jona opisana je na nivou grube i fine strukture i data zajedno sa kratkim opisom radijativnih prelaza u atomu (poglavlja od 5. do 7). U osmom poglavlju opis drugih atoma počinje sa helijumom, koji se ujedno može posmatrati kao predstavnik atomskih sistema sa dva elektrona. Kako je za višeelektronske sisteme (poglavlje 9) kvantnomehanički račun izuzetno komplikovan, dat je pregled metoda izračunavanja energetskih nivoa i određivanje momenata impulsa, odnosno opis strukture preko sistema termova. Poslednja tri poglavlja opisuju interakciju atoma sa spoljašnjim poljima, magnetnim i električnim (poglavlja 10 i 11), kao i uticaj jezgra na energetske nivoe atoma (poglavlje 12). Na kraju udžbenika nalazi se dodatak, kao i spisak literature.

Prikaži sve...
3,300RSD
forward
forward
Detaljnije

Predmet prodaje je očuvan komplet udžebenika za šesti razred osnovne škole koji se sastoji od sledećih knjiga: 1. Matematika - Udžbenik i Zbirka zadataka, Autori: S. Ješić, J. Blagojević, A. Rosić, T. Njaradi, Izdavač: Gerundijum. 2. Informatika i računarstvo: Udžbenik, Autori: M. Papić, D. Čukljević, Izdavač: Vulkan Znanje. 3. Nemački jezik - Udžbenik i Radna sveska, Autori: Đ. Mota, E. Krulak-Kempisti, K. Bras, D. Glik, J. K. Veber, L. Šober, Izdavač: Klett. 4. Engleski jezik - Udžbenik i Radna sveska, Autori: H. Q. Mitchell, M. Malkogianni, Izdavač: Data Status. 5. Srpski jezik i književnost - Gramatika, Čitanka i Radna sveska, Autori: D. Milićević, S. Rakonjac-Nikolov, K. Kolaković, A. Petrović, A. Jerkov, Izdavač: Vulkan Znanje. 6. Muzička kultura - Udžbenik, Autori: G. Grujić, M. Sokolović Ignjačević, S. Kesić, B. Lekovič, Izdavač: Klett. 7. Tehnika i tehnologija - Udžbenik, Autori: M. Sekulić, Z. Luković, Izdavač: Vulkan Znanje. 8. Biologija - Udžbenik, Autori: M. Markelić, I. Lakić, K. Zeljić, N. Kuzmanović, Izdavač: Vulkan Znanje. 9. Fizika - Udžbenik i Zbirka zadataka sa laboratorijskim vežbama, Autori: K. Stevanović, M. Krneta, R. Tošović, Izdavač: BIGZ. 10. Geografija - Udžbenik, Autor: J. Popović, Izdavač: Vulkan Znanje. 11. Istorija - Udžbenik sa odabranim istorijskim izvorima i Testovi za proveru znanja, Autori: D. Lopandić, I. Petrović, Izdavač: Logos.

Prikaži sve...
4,990RSD
forward
forward
Detaljnije

Lepo očuvano Problems in Theoretical Physics Grechko, L. G., V.I. Sugakov and O.F. Tomasevich: Published by MIR, Moscow, 1977 Contents PREFACE 5 Section I. Classical Mechanics 9 Problems 25 Answers 141 Section II. Electrodynamics 50 Problems 61 Answers 160 Section III. Quantum Mechanics 78 Problems 92 Answers 230 Section IV. Statistical Physics and Thermodynamics 110 Problems 119 Answers 356 APPENDICES 424 1. Basic formulas of vector analysis 424 2. Curvilinear coordinates 425 3. Differential operators in curvilinear coordinates 429 4. Mathematical supplement 434 5. Legendre polynomials 441 6. Hermite polynomials 444 7. The confluent hypergeometric junction 446 BOOKS ON THE SUB1ECT 448 RETKO! RARE! This book is a collection of problems covering mechanics, electrodynamics, nonrelativistic quantum mechanics, !statistical physics and thermodynamics. Each Section opens with a brief outline of the main laws and relationships used to solve the problems. Also information about the needed mathematical apparatus is included. Along with answers there are guides to solving the more complicated problems. SI units are used throughout the book. Problems in Theoretical Physics is intended for physics majors at universities and other institutions of higher learning. Some of the problems are specifically for students majoring in theoretical physics. Certain ones can be used in the physics and mathematics departments of teachers colleges. From the Preface The text draws largely on the Course of Theoretical Physics by L. D. Landau and E. M. Lifshitz, but also makes use of other textbooks and handbooks recommended for the university course in theoretical physics. Some of the problems have been taken from published problem books listed at the end of this book, but many are original. The student will be able to solve the problems if he has a good knowledge of the fundamentals of theoretical physics, which are briefly outlined in each section of this book. Tags: Problemi teorijske fizike / Teorijska fizika moskva izdanja na engleskom

Prikaži sve...
7,990RSD
forward
forward
Detaljnije

Lepo očuvano Solid State Physics by G. I. Epifanov ( Mir Publishers Moscow, 1979, Hardcover ) Author: G. I. Epifanov, D.Sc. Publisher: Mir Publishers, Moscow. Title: Solid State Physics. Printed in: Moscow, Russian Federation. Edition 1st English Edition 1979 info: This is a book which covers the topic of solid state physics comprehensively. Starting from the structure of matter and various types of bonds in the first chapter the mechanical properties are treated in the second chapter. The second chapter also includes a discussion of Hooke`s Law, plastic flow, dislocations, elasticity etc. The third chapter deals with statistical mechanics and discusses degenerate and non-degenerate ensembles and various distribution functions. The fourth chapter looks at thermal properties of solids with reference to crystal lattice, heat capacity, heat conductivity etc. The fifth chapter discusses band theory of solids with reference to energy spectrum, effective mass and semiconductors. Some of the graphs in this chapter are revealing of the physical processes in the working of band structure. Sixth and seventh chapter deal with electrical and magnetic properties of solids. Sixth chapter also discusses deviations from Ohm`s Law (Section 58). Seventh chapter includes discssion on various types of magnetism their origins, and magnetic properties of solids and atoms along with magnetic resonance. Eighth chapter discusses contact phenomenon, work functions between different of materials including p-n junctions. The last chapter discusses thermoelectric and galvanomagnetic phenomena including Seeback effect, Peltier effect, Thomson effect and some of their practical applications. As in the first edition, the presentation of material has followed the aim of elucidating the physical nature of the phenomena dis­cussed. But, where possible, the qualitative relations are also pre­sented, often though without rigorous mathematics. The book was translated from the Russian by Mark Samokhvalov and was published by Mir in 1979. Contents Preface 5 1 Bonding. The Internal Structure of Solids § 1 The van der Waals forces 11 § 2 The ionic bond 15 § 3 The covalent bond 16 § 4 The metallic bond 21 § 5 The hydrogen bond 22 § 6 Comparison between bonds of various kinds 23 § 7 Forces of repulsion 24 § 8 Crystal lattice 25 § 9 Notation used to describe sites, directions, and planes in a crystal 29 §10 Classification of solids based on the nature of bonds 32 §11 Polymorphism 38 §12 Imperfections and defects of the crystal lattice 42 2 Mechanical Properties of Solids § 13 Elastic and plastic deformations. Hooke’s law 46 § 14 Principal laws governing plastic flow in crystals 51 § 15 Mechanical twinning 55 § 16 Theoretical and real shear strengths of crystals 56 § 17 The dislocation concept. Principal types of dislocations 58 § 18 Forces needed to move dislocations 64 § 19 Sources of dislocations. Strengthening of crystals 66 § 20 Brittle strength of solids 71 § 21 Time dependence of the strength of solids 77 § 22 Methods of increasing the strength of solids 81 3 Elements of Physical Statistics § 23 Methods used to describe the state of a macroscopic system 84 § 24 Degenerate and nondegenerate ensembles 88 § 25 The number of states for microscopic particles 91 § 26 Distribution function for a nondegenerate gas 94 § 27 Distribution function for a degenerate fermion gas 96 § 28 Distribution function for a degenerate boson gas 103 § 29 Rules for statistical averaging 105 4 Thermal Properties of Solids § 30 Normal modes of a lattice 107 § 31 Normal modes spectrum of a lattice 110 § 32 Phonons 112 § 33 Heat capacity of solids 115 § 34 Heat capacity of electron gas 120 § 35 Thermal expansion of solids 122 § 36 Heat conductivity of solids 126 5 The Band Theory of Solids § 37 Electron energy levels of a free atom 133 § 38 Collectivization of electrons in a crystal 136 § 39 Energy spectrum of electrons in a crystal 138 § 40 Dependence of electron energy on the wave vector 142 § 41 Effective mass of the electron 147 § 42 Occupation of bands by electrons. Conductors,dielectrics, and semiconductors 151 § 43 Intrinsic semiconductors. The concept of a hole 153 § 44 Impurity semiconductors 156 § 45 Position of the Fermi level and free carrier concentration in semiconductors 159 § 46 Nonequilibrium carriers 166 6 Electrical Conductivity of Solids § 47 Equilibrium state of electron gas in a conductor in the absence of an electric field 169 § 48 Electron drift in an electric field 170 § 49 Relaxation time and mean free path 171 § 50 Specific conductance of a conductor 173 § 51 Electrical conductivity of nondegenerate and degenerate gases 174 § 52 Wiedemann-Franz-Lorenz law 176 § 53 Temperature dependence of carrier mobility 177 § 54 Electrical conductivity of pure metals 183 § 55 Electrical conductivity of metal alloys 184 § 56 Intrinsic conductivity of semiconductors 188 § 57 Impurity (extrinsic) conductivity of semiconductors 190 § 58 Deviation from Ohm’s law. The effect ofa strong field 193 § 59 The Gunn effect 195 § 60 Photoconductivity of semiconductors 196 § 61 Luminescence 203 § 62 Fundamentals of superconductivity 207 7 Magnetic Properties of Solids § 63 Magnetic field in magnetic materials 224 § 64 Magnetic properties of solids 225 § 65 Magnetic properties of atoms 232 § 66 Origin of diamagnetism 238 § 67 Origin of paramagnetism 240 § 68 Origin of ferromagnetism 247 § 69 Antiferromagnetism 254 § 70 Ferrimagnetism. Ferrites 255 § 71 Magnetic resonance 257 § 72 Fundamentals of quantum electronics 259 8 Contact Phenomena § 73 Work function 265 § 74 Contact of two metals 268 § 75 The metal-semiconductor contact 271 § 76 Contact between two semiconductors of different types of conductivity 278 § 77 Physical principles of semiconductor p~n junction devices 288 § 78 Fundamentals of integrated circuit electronics (microelectron­ ics) 299 9 Thermoeleletric and Galvanomagnetic Phenomena § 79 The Seebeck effect 302. § 80 The Peltier effect 307 § 81 The Thomson effect 310 § 82 Galvanomagnetic phenomena 310 § 83 Practical applications of thermoelectric and galvanomag­netic phenomena 315 Appendices I Derivation of the Maxwell-Boltzmann distribution function 317 II Derivation of the Fermi-Dirac distribution function 318 III Derivation of the Bose-Einstein distribution function 320 IV Tables 321 Glossary of Symbols and Notations 322 Bibliography 326 Index 329 Fizika strucna literatura iz fizike naucne knjige prirodne nauke

Prikaži sve...
7,990RSD
forward
forward
Detaljnije

Odlično stanje Majkl Faradej, FRS (engl. Michael Faraday; Njuington Bats, 22. septembar 1791 — London, 25. avgust 1867) bio je engleski eksperimentalni i optički fizičar i hemičar, član Kraljevskog društva. Značajan po mnogim naučnim otkrićima, prvenstveno u oblasti elektriciteta i magnetizma. Od 1903. godine eponim je Faradejevog društva (od 1980. spojeno u Kraljevsko hemijsko društvo). Majkl Faradej M Faraday Th Phillips oil 1842.jpg Majkl Faradej (1842, T. Filips) Rođenje 22. septembar 1791. Njuington Bats, Velika Britanija Smrt 25. avgust 1867. (75 god.) London, Ujedinjeno Kraljevstvo Polje eksperimentalna fizika, optička fizika; hemija Institucija Kraljevska institucija Poznat po 13 stavki Faradejev zakon EMI Elektrohemija Faradejev efekat Faradejev kavez Faradejeva konstanta Faradejev cilindar Faradejev zakon elektrolize Faradejev paradoks Faradejev rotator Faradejev učinak Faradejev talas Faradejev točak Faradejeve linije sile[1] Nagrade 4 značajne Kraljevska medalja (1835, 1846) Nagrada Kopli (1832, 1838) Ramfordova medalja (1846) Albertova medalja (1866) Potpis Michael Faraday signature.svg Život Majkla Faradeja vrlo je zanimljiv i bogat doživljajima. Kao mlad knjigovezački radnik zainteresovao se za fiziku i odlučio da se bavi izučavanjem prirodnih pojava. Najpre je radio u laboratoriji tada čuvenog engleskog hemičara Hamfrija Dejvija. Daroviti mladić bio je vrlo radoznao i dalje se sam usavršavao, neprekidno vršeći najraznovrsnije fizičke i hemijske oglede. Otkrio je dva osnovna zakona elektrolize, tada je radio u Kiculovoj laboratoriji. Ovi zakoni su postali osnov elektrohemije i učenja o elektricitetu, a poznati su kao Faradejevi zakoni elektrolize.[2] Ovaj marljivi naučnik prvi je otkrio i vezu između magnetskog polja i svetlosti.[3][4] Njegovo najznačajnije otkriće je poznati Faradejev zakon elektromagnetne indukcije koji je kasnije uvršćen i među Maksvelove osnovne jednačine elektrodinamike. Po Faradeju je dobila ime jedinica za merenje električnog kapaciteta — farad (F), kao i rotacija ravni polarizacije svetlosti u magnetskom polju — Faradejev efekat. Detinjstvo i početak karijere Uredi Majkl Faradej je rođen u malom mestu Njuington Bats (Newington Butts), danas južni London. Živeo je u siromašnoj porodici, pa se obrazovao sam. [5] S četrnaest godina postao je šegrt kod londonskog knjigovesca i prodavca knjiga Džordža Riboa (George Riebau). Za sedam godina rada pročitao je mnogo knjiga i razvio interes za nauku, a posebno za elektricitet.[6][7] Faradejeva laboratorija u Kraljevskoj instituciji (gravira, 1870) Sa 19 godina Faradej je studirao kod priznatih hemičara ser Hamfrija Dejvija, predsednika Kraljevskog društva i Džona Tejtuma, osnivača Građanskog filozofskog društva. Nakon što je Faradej poslao Dejviju knjigu od 300 strana sa beleškama sa predavanja, ovaj mu je odgovorio da će ga imati na umu, ali da se još uvek drži svog zanata knjigovesca. Nakon što je Dejvi oštetio vid pri eksperimentu sa azot-trihloridom, postavio je Faradeja za sekretara.[8] Kad je Džon Pejn iz Kraljevskog društva dobio otkaz, Dejvi je predložio Faradeja kao laboratorijskog asistenta. Naučna karijera Uredi Jedan od Faradejevih ekspe­rime­nata iz 1831. u kojem se demonstrira indukcija; tečna baterija (desno) šalje električnu struju kroz mali kalem (A) koji kada se pomera ka gore ili dole unutar velikog kalema (B) njegovo magnetno polje indukuje tre­nutni napon u kalemu, koji se može detektovati galvanometrom (G) Najveći i najpoznatiji Faradejevi radovi bili su vezani za elektricitet. Otkriće danskog hemičara Hansa Kristijana Ersteda da magnetna igla skreće ako se nađe blizu provodnika kroz koji protiče električna struja, potaknulo je Dejvija i Volastona da 1821. pomoću Erstedovog elektromagnetizma pokušaju konstruisati elektromotor, ali u tome nisu uspeli. Faradej je, nakon diskusije sa njima, počeo raditi na uređaju koji bi radio na principu elektromagnetske rotacije: ako se na polovinu magneta (sličnog potkovici) postavi pljosnata metalna čaša napunjena živom, a u čašu uvuče sa oba kraja bakarna žica, čija se sredina oko jednog šiljka oslanja na pol magneta i kada se kroz živu pusti električna struja iz električne baterije, ona će, prolazeći kroz žicu, prisiliti žicu da se okreće oko magneta. Ako se taj pribor postavi na drugi pol magneta, žica će početi da se okreće na suprotnu stranu. Taj izum poznat je kao homopolarni motor. Ovi su eksperimenti i izumi postavili osnove moderne elektromagnetske tehnologije. No onda je učinio grešku. Svoj eksperiment je objavio pre pokazivanja Volastonu i Dejviju, što je dovelo do kontroverze i bilo je uzrok njegovog povlačenja s područja elektromagnetizma na nekoliko godina. Majk Faradej (cca 1861) Portret Faradeja u njegovim kasnim tridesetim Nakon deset godina, 1831. započeo je seriju eksperimenata u kojima je otkrio elektromagnetnu indukciju. Moguće je da je Džozef Henri otkrio samoindukciju nekoliko meseci pre Faradeja, ali su oba otkrića zasenjena otkrićem Italijana Frančeska Zantedekija. On je otkrio da ako provuče magnet kroz krug od žice da će se magnet zadržati sredini kruga. Njegovi esperimenti su pokazali su da promenljivo magnetsko polje indukuje (uzrokuje) električnu struju. Ova je teorija matematički nazvana Faradejev zakon, a kasnije je postala jedna od četiri Maksvelove jednačine. Faradej je to iskoristirao da konstruiše električni dinamo, preteču modernog generatora. Faradej je tvrdio da se elektromagnetni talasi šire u praznom prostoru oko provodnika, ali taj eksperiment nikad nije dovršio. Njegove kolege naučnici su odbacile takvu ideju, a Faradej nije doživeo da vidi prihvatanje svoje ideje. Faradejev koncept linija fluksa koje izlaze iz naelektrisanih tela i magneta omogućio je način da se zamisli izgled električnih i magnetnih polja. Taj model bio je prekretnica za uspešne konstrukcije elektromehaničkih mašina koje su dominirale u inženjerstvu od 19. veka. Jednostavni dijagram Faradejevog aparatusa za indukovanje električne struje magnetnim poljem: baterija (levo), prsten i namotani kalem od gvožđa (u sredini) i galvanometar (desno) Faradej se bavio i hemijom, a tu je otkrio nove supstance, oksidacione brojeve i način kako gasove pretvoriti u tečnost. Takođe je otkrio zakone elektrolize i uveo pojmove anoda, katoda, elektroda i jon. Godine 1845. otkrio je ono što danas nazivamo Faradejev efekat i fenomen nazvan dijamagnetizam. Smer polarizacije linearno polarizovanog svetla propušten kroz meterijalnu sredinu može biti rotiran pomoću spoljašnjeg magnetskog polja postavljenog u pravom smeru. U svoju beležnicu je zapisao: „ Konačno sam uspeo osvetliti magnetske linije sile i da namagnetišem zrak svetla. ” To je dokazalo povezanost između magnetizma i svetlosti. U radu sa statičkim elektricitetom, Faradej je pokazao da se elektricitet u provodniku pomiče ka spoljašnjosti, odnosno da ne postoji u unutrašnjosti provodnika. To je zato što se u elektricitet raspoređuje po površini na način koji poništava električno polje u unutrašnjosti. Taj se efekt naziva Faradejev kavez. Ostalo Uredi Majkl Faradej (1917, A. Blejkli) Grob Majkla Faradeja na groblju „Hajgejt” u Londonu Imao je seriju uspešnih predavanja iz hemije i fizike na Royal Institution, nazvana The Chemical History of a Candle. To je bio početak božićnih predavanja omladini koja se i danas održavaju. Faradej je poznat po izumima i istraživanjima, ali nije bio obrazovan u matematici. No u saradnji sa Maksvelom njegovi su patenti prevedeni u metematički jezik. Poznat je po tome što je odbio titulu ser i predsedništvo u Kraljevskom društvu (predsedavanje britanskom kraljevskom akademijom). Njegov lik štampan je na novčanici od 20 funti. Njegov sponzor i učitelj bio je Džon Fuler, osnivač Fulerove profesorske katedre na katedri za hemiju kraljevskog instituta. Faradej je bio prvi i najpoznatiji nosilac te titule koju je dobio doživotno. Faradej je bio veoma pobožan i bio je član jedne male sekte unutar škotske crkve. Služio je crkvi kao stariji član i držao mise.[9] Faradej se 1821. oženio Sarom Bernar, ali nisu imali dece.[10] Kako se približavao pedesetoj godini smanjivao je rad i obaveze da bi u jesen 1841. primetio da rapidno gubi pamćenje i od tada njegov rad skoro potpuno prestaje. Preminuo je u svojoj kući u Hempton Kortu, 25. avgusta 1867. godine. Bibliografija Uredi Chemische Manipulation (1828) Faradeje knjige, sa izuzetkom Chemical Manipulation, bile su kolekcije naučnih radova ili transkripcije predavanja.[11] Nakon njegove smrti, objavljen je Faradejev dnevnik, kao zbirka nekoliko velikih svezaka njegovih pisama; te Faradejev žurnal, sa njegovim putovanjima sa Dejvi (1813—1815). Faraday, Michael (1827). Chemical Manipulation, Being Instructions to Students in Chemistry. John Murray. 2nd ed. 1830, 3rd ed. 1842 Faraday, Michael (1839). Experimental Researches in Electricity, vols. i. and ii. Richard and John Edward Taylor.; vol. iii. Richard Taylor and William Francis, 1855 Faraday, Michael (1859). Experimental Researches in Chemistry and Physics. Taylor and Francis. ISBN 978-0-85066-841-4. Faraday, Michael (1861). W. Crookes, ur. A Course of Six Lectures on the Chemical History of a Candle. Griffin, Bohn & Co. ISBN 978-1-4255-1974-2. Faraday, Michael (1873). W. Crookes, ur. On the Various Forces in Nature. Chatto and Windus. Faraday, Michael (1932—1936). T. Martin, ur. Diary. ISBN 978-0-7135-0439-2. – published in eight volumes; see also the 2009 publication of Faraday`s diary Faraday, Michael (1991). B. Bowers and L. Symons, ur. Curiosity Perfectly Satisfyed: Faraday`s Travels in Europe 1813–1815. Institution of Electrical Engineers. Faraday, Michael (1991). F. A. J. L. James, ur. The Correspondence of Michael Faraday. 1. INSPEC, Inc. ISBN 978-0-86341-248-6. – volume 2, 1993; volume 3, 1996; volume 4, 1999 Faraday, Michael (2008). Alice Jenkins, ur. Michael Faraday`s Mental Exercises: An Artisan Essay Circle in Regency London. Liverpool, UK: Liverpool University Press. Course of six lectures on the various forces of matter, and their relations to each other London; Glasgow: R. Griffin, 1860. The Liquefaction of Gases, Edinburgh: W. F. Clay, 1896. The letters of Faraday and Schoenbein 1836–1862. With notes, comments and references to contemporary letters London: Williams & Norgate 1899. (Digital edition by the University and State Library Düsseldorf)

Prikaži sve...
2,790RSD
forward
forward
Detaljnije

odlično stanje U teorijskoj fizici, kvantna teorija polja je teorijski okvir koji kombinuje klasičnu teoriju polja, specijalnu relativnost i kvantnu mehaniku[1] i koristi se za konstrukciju fizičkih modela subatomskih čestica (u fizici čestica) i kvazičestica (u fizici kondenzovane materije). Kvantna teorija polja tretira čestice kao pobuđena stanja (koja se nazivaju i kvanti) njihovih temeljnih polja, koja su, u određenom smislu, fundamentalnija od osnovnih čestica. Interakcije između čestica opisane su pojmovima interakcije u Lagranžijanovoj teoriji polja koja uključuje njihova odgovarajuća polja. Svaka interakcija može biti vizuelno predstavljena Fajmanovim dijagramima, koji su formalni računski alati u procesu relativističke teorije perturbacija. Kao uspešan teorijski radni okvir danas, kvantna teorija polja proizašla je iz rada generacija teorijskih fizičara 20. veka. Njen razvoj je počeo 1920-ih sa opisom interakcija između svetlosti i elektrona, kulminirajući u prvoj kvantnoj teoriji polja - kvantnoj elektrodinamici . Velika teorijska prepreka ubrzo je usledila sa pojavom i postojanošću raznih beskonačnosti u perturbativnim proračunima, problem koji je rešen tek pedesetih godina prošlog veka izumom renormalizacijske procedure. Druga velika prepreka bila je očigledna nesposobnost kvantne teorije polja da opiše slabe i jake interakcije, do te mere da su neki teoretičari tražili napuštanje teorijskog pristupa. Razvoj teorije kalibra i završetak Standardnog modela 1970-ih doveli su do renesanse kvantne teorije polja. Teorijska osnova Uredi Linije magnetnog polja vizualizovane upotrebom gvožđa. Kada je komad papira posut gvozdenim strugotinama i postavljen iznad magnetnog šipka, strugotine se poravnavaju prema smeru magnetnog polja, formirajući lukove. Kvantna teorija polja je rezultat kombinacije klasične teorije polja, kvantne mehanike i posebne relativnosti.[1] Najstarija uspešna klasična teorija polja je ona koja je nastala iz Njutnovog zakona univerzalne gravitacije, uprkos potpunoj odsutnosti koncepta polja iz njegovog traktata iz 1687. godine Matematički principi prirodne filozofije. Sila gravitacije koju opisuje Njutn je „akcija na daljinu” - njeni efekti na udaljene objekte su trenutni, bez obzira na udaljenost. Matematički fizičari su tek u 18. veku otkrili prikladan opis gravitacije na osnovu polja - numeričke veličine (vektor) dodeljene svakoj tački u prostoru koja ukazuje na delovanje gravitacije na bilo koju česticu u toj tački. Međutim, ovo se smatralo samo matematičkim trikom. [2] Polja su počela da preuzimaju sopstveno postojanje sa razvojem elektromagnetizma u 19. veku. Majkl Faradej je 1845. skovao engleski termin „polje” (engl. field). On je unosio polja kao svojstva prostora (čak i kada je lišen materije) koja imaju fizičke efekte. On se protivio „akciji na daljinu` i predložio da se interakcije između objekata odvijaju kroz „linije sile” koje ispunjavaju prostor. Ovaj opis polja ostaje do danas.[3][4][5] Teorija klasičnog elektromagnetizma završena je 1862. godine sa Maksvelovim jednačinama, koje su opisale odnos između električnog polja, magnetnog polja, električne struje i električnog naboja. Maksvelove jednačine podrazumevale su postojanje elektromagnetnih talasa, fenomen gde se električna i magnetska polja šire iz jedne prostorne tačke u drugu pri konačnoj brzini, koja ispada da je brzina svetlosti. „Akcija na daljinu” je tako konačno odbačena.[3] Uprkos ogromnom uspehu klasičnog elektromagnetizma, nije mogao da uzme u obzir diskretne linije u atomskom spektru, niti raspodelu zračenja crnog tela u različitim talasnim dužinama.[6] Plankovo istraživanje zračenja crnog tela označilo je početak kvantne mehanike. On je tretirao atome, koji apsorbuju i emituju elektromagnetno zračenje, kao sitne oscilatore sa ključnim svojstvom da njihove energije mogu da preuzmu samo niz diskretnih, a ne kontinuiranih vrednosti. Oni su poznati kao kvantni harmonički oscilatori. Ovaj proces ograničavanja energije na diskretne vrednosti zove se kvantizacija.[7] Na osnovu ove ideje, Albert Ajnštajn je predložio 1905. godine objašnjenje za fotoelektrični efekat, da se svetlost sastoji od pojedinačnih paketa energije koji se nazivaju fotoni (kvant svetlosti). To implicira da elektromagnetno zračenje, dok su talasi u klasičnom elektromagnetnom polju, takođe postoji u obliku čestica.[6] Nils Bor je 1913. godine uveo Borov model atomske strukture, pri čemu elektroni unutar atoma mogu preuzeti samo niz diskretnih, a ne kontinuiranih energija. Ovo je još jedan primer kvantizacije. Borov model uspešno je objasnio diskretnu prirodu atomskih spektralnih linija. Godine 1924. Luj de Broj je predložio hipotezu o dualnosti talasa i čestica, da mikroskopske čestice pokazuju osobine i talasa i čestica u različitim okolnostima.[6] Ujedinjavanje ovih raspršenih ideja, koherentna disciplina, kvantna mehanika, formulisana je između 1925. i 1926. godine, sa važnim doprinosima de Broja, Vernera Hajzenberga, Maksa Borna, Ervina Šredingera, Pola Diraka i Volfganga Paulija.[2]:22-23 Iste godine kada je izašao i njegov rad o fotoelektričnom efektu, Ajnštajn je objavio svoju teoriju posebne relativnosti, izgrađenu na Maksvelovom elektromagnetizmu. Nova pravila, nazvana Lorencova transformacija, data su za način na koji se vremenske i prostorne koordinate događaja menjaju pod promenama brzine posmatrača, a razlika između vremena i prostora je zamagljena.[2]:19 Predloženo je da svi fizički zakoni moraju biti isti za posmatrače pri različitim brzinama, tj. da su fizički zakoni invarijantni pod Lorencovim transformacijama. Ostale su još dve teškoće. Šredingerova jednačina, na kojoj se temelji kvantna mehanika, mogla bi objasniti stimulisanu emisiju zračenja iz atoma, gde elektron emituje novi foton pod delovanjem spoljnog elektromagnetnog polja, ali nije mogla objasniti spontanu emisiju, gde se elektron spontano smanjuje u energiji i emituje foton čak i bez dejstva spoljašnjeg elektromagnetnog polja. Teorijski, Šredingerova jednačina nije mogla da opiše fotone i bila je u suprotnosti sa principima posebne relativnosti - vreme tretira kao običan broj, dok promoviše prostorne koordinate za linearne operatore kvantna fizika kvant

Prikaži sve...
4,990RSD
forward
forward
Detaljnije
Nazad
Sačuvaj