Filteri
close
Tip rezultata
Svi rezultati uključeni
keyboard_arrow_down
Kategorija
Sve kategorije
keyboard_arrow_down
Od
RSD
Do
RSD
Sortiraj po
keyboard_arrow_down
Objavljeno u proteklih
keyboard_arrow_down
Sajtovi uključeni u pretragu
Svi sajtovi uključeni
keyboard_arrow_down

Pratite promene cene putem maila

  • Da bi dobijali obaveštenja o promeni cene potrebno je da kliknete Prati oglas dugme koje se nalazi na dnu svakog oglasa i unesete Vašu mail adresu.
76-100 od 154 rezultata

Broj oglasa

Prikaz

format_list_bulleted
view_stream
76-100 od 154 rezultata

Prikaz

format_list_bulleted
view_stream

Režim promene aktivan!

Upravo ste u režimu promene sačuvane pretrage za frazu .
Možete da promenite frazu ili filtere i sačuvate trenutno stanje

Aktivni filteri

  • Tag

    Sociologija
  • Tag

    Stručna literatura

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Matematika (lat. [ars] mathematica < grč. μαϑηματιϰὴ [τέχνη]: matematičko [umijeće], prema μάϑημα: nauk; znanje),[3] je nauka koja izučava prirodu koristeći logiku.[4] Izučavane strukture najčešće potiču iz drugih prirodnih nauka, najčešće fizike, ali neke od struktura su definisane i izučavane radi internih razloga.[5][6][7] Istorijski, matematika se razvila iz potrebe da se obavljaju proračuni u trgovini, vrše mjerenja zemljišta i predviđaju astronomski događaji, i ove tri primjene se mogu dovesti u vezu sa grubom podjelom matematike u izučavanje strukture, prostora i izmjena.[8] Izučavanje strukture počinje sa brojevima, u početku sa prirodnim brojevima i cijelim brojevima.[9] Osnovna pravila za aritmetičke operacije su definisana u osnovnoj algebri a dodatna svojstva cijelih brojeva se izučavaju u teoriji brojeva. Izučavanje metoda za rješavanje jednačina je dovelo do razvoja apstraktne algebre koja između ostalog izučava prstenove i polja, strukture koje generalizuju osobine koje posjeduju brojevi.[10] Fizikalno važan koncept vektora se izučava u linearnoj algebri. Izučavanje prostora je počelo sa geometrijom, prvo Euklidovom geometrijom i trigonometrijom u pojmljivom trodimenzionalnom prostoru, ali se kasnije proširila na neeuklidske geometrije koje imaju centralnu ulogu u opštoj relativnosti. Moderna polja geometrije su diferencijalna geometrija i algebarska geometrija. Teorija grupa izučava koncept simetrije, i predstavlja vezu u u izučavanju prostora i strukture. Topologija povezuje izučavanje prostora i izmjene fokusirajući se na koncept kontinuiteta. Razumjevanje i opisivanje izmjena mjerljivih varijabli je glavna značajka prirodnih nauka, i diferencijalni račun je razvijen u te svrhe.[11] Centralni koncept kojim se opisuje promjena varijable je funkcija. Mnogi prirodni problemi su vodili uspostavljanju veze između vrijednosti i količine izmjene, i metodi razvijeni pri tome, se izučavaju u diferencijalnim jednačinama. Brojevi koji predstavljaju kontinualne veličine su realni brojevi, i detaljno izučavanje njihovih svojstava i funkcija je predmet analize. Zbog matematskih razloga, uveden je koncept kompleksnih brojeva koji se izučavaju u kompleksnoj analizi. Funkcionalna analiza je skoncetrisana na n-dimenzionalne prostore funkcija postavljajući time osnovu za izučavanje kvantne mehanike.[12] Radi pojašnjavanja i izučavanja osnova matematike, razvijene su oblasti teorija skupova, matematička logika i teorija modela. Važna oblast primjenjene matematike je vjerovatnoća i statistika koja se bavi izučavanjem i predviđanjem slučajnosti i slučajnih pojava. Numerička analiza izučava numeričke metode izračunavanja a diskretna matematika je zajedničko ime za oblasti matematike koje se koriste u računarskim naukama.

Prikaži sve...
1,390RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Matematika (lat. [ars] mathematica < grč. μαϑηματιϰὴ [τέχνη]: matematičko [umijeće], prema μάϑημα: nauk; znanje),[3] je nauka koja izučava prirodu koristeći logiku.[4] Izučavane strukture najčešće potiču iz drugih prirodnih nauka, najčešće fizike, ali neke od struktura su definisane i izučavane radi internih razloga.[5][6][7] Istorijski, matematika se razvila iz potrebe da se obavljaju proračuni u trgovini, vrše mjerenja zemljišta i predviđaju astronomski događaji, i ove tri primjene se mogu dovesti u vezu sa grubom podjelom matematike u izučavanje strukture, prostora i izmjena.[8] Izučavanje strukture počinje sa brojevima, u početku sa prirodnim brojevima i cijelim brojevima.[9] Osnovna pravila za aritmetičke operacije su definisana u osnovnoj algebri a dodatna svojstva cijelih brojeva se izučavaju u teoriji brojeva. Izučavanje metoda za rješavanje jednačina je dovelo do razvoja apstraktne algebre koja između ostalog izučava prstenove i polja, strukture koje generalizuju osobine koje posjeduju brojevi.[10] Fizikalno važan koncept vektora se izučava u linearnoj algebri. Izučavanje prostora je počelo sa geometrijom, prvo Euklidovom geometrijom i trigonometrijom u pojmljivom trodimenzionalnom prostoru, ali se kasnije proširila na neeuklidske geometrije koje imaju centralnu ulogu u opštoj relativnosti. Moderna polja geometrije su diferencijalna geometrija i algebarska geometrija. Teorija grupa izučava koncept simetrije, i predstavlja vezu u u izučavanju prostora i strukture. Topologija povezuje izučavanje prostora i izmjene fokusirajući se na koncept kontinuiteta. Razumjevanje i opisivanje izmjena mjerljivih varijabli je glavna značajka prirodnih nauka, i diferencijalni račun je razvijen u te svrhe.[11] Centralni koncept kojim se opisuje promjena varijable je funkcija. Mnogi prirodni problemi su vodili uspostavljanju veze između vrijednosti i količine izmjene, i metodi razvijeni pri tome, se izučavaju u diferencijalnim jednačinama. Brojevi koji predstavljaju kontinualne veličine su realni brojevi, i detaljno izučavanje njihovih svojstava i funkcija je predmet analize. Zbog matematskih razloga, uveden je koncept kompleksnih brojeva koji se izučavaju u kompleksnoj analizi. Funkcionalna analiza je skoncetrisana na n-dimenzionalne prostore funkcija postavljajući time osnovu za izučavanje kvantne mehanike.[12] Radi pojašnjavanja i izučavanja osnova matematike, razvijene su oblasti teorija skupova, matematička logika i teorija modela. Važna oblast primjenjene matematike je vjerovatnoća i statistika koja se bavi izučavanjem i predviđanjem slučajnosti i slučajnih pojava. Numerička analiza izučava numeričke metode izračunavanja a diskretna matematika je zajedničko ime za oblasti matematike koje se koriste u računarskim naukama....

Prikaži sve...
1,490RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Matematika (lat. [ars] mathematica < grč. μαϑηματιϰὴ [τέχνη]: matematičko [umijeće], prema μάϑημα: nauk; znanje),[3] je nauka koja izučava prirodu koristeći logiku.[4] Izučavane strukture najčešće potiču iz drugih prirodnih nauka, najčešće fizike, ali neke od struktura su definisane i izučavane radi internih razloga.[5][6][7] Istorijski, matematika se razvila iz potrebe da se obavljaju proračuni u trgovini, vrše mjerenja zemljišta i predviđaju astronomski događaji, i ove tri primjene se mogu dovesti u vezu sa grubom podjelom matematike u izučavanje strukture, prostora i izmjena.[8] Izučavanje strukture počinje sa brojevima, u početku sa prirodnim brojevima i cijelim brojevima.[9] Osnovna pravila za aritmetičke operacije su definisana u osnovnoj algebri a dodatna svojstva cijelih brojeva se izučavaju u teoriji brojeva. Izučavanje metoda za rješavanje jednačina je dovelo do razvoja apstraktne algebre koja između ostalog izučava prstenove i polja, strukture koje generalizuju osobine koje posjeduju brojevi.[10] Fizikalno važan koncept vektora se izučava u linearnoj algebri. Izučavanje prostora je počelo sa geometrijom, prvo Euklidovom geometrijom i trigonometrijom u pojmljivom trodimenzionalnom prostoru, ali se kasnije proširila na neeuklidske geometrije koje imaju centralnu ulogu u opštoj relativnosti. Moderna polja geometrije su diferencijalna geometrija i algebarska geometrija. Teorija grupa izučava koncept simetrije, i predstavlja vezu u u izučavanju prostora i strukture. Topologija povezuje izučavanje prostora i izmjene fokusirajući se na koncept kontinuiteta. Razumjevanje i opisivanje izmjena mjerljivih varijabli je glavna značajka prirodnih nauka, i diferencijalni račun je razvijen u te svrhe.[11] Centralni koncept kojim se opisuje promjena varijable je funkcija. Mnogi prirodni problemi su vodili uspostavljanju veze između vrijednosti i količine izmjene, i metodi razvijeni pri tome, se izučavaju u diferencijalnim jednačinama. Brojevi koji predstavljaju kontinualne veličine su realni brojevi, i detaljno izučavanje njihovih svojstava i funkcija je predmet analize. Zbog matematskih razloga, uveden je koncept kompleksnih brojeva koji se izučavaju u kompleksnoj analizi. Funkcionalna analiza je skoncetrisana na n-dimenzionalne prostore funkcija postavljajući time osnovu za izučavanje kvantne mehanike.[12] Radi pojašnjavanja i izučavanja osnova matematike, razvijene su oblasti teorija skupova, matematička logika i teorija modela. Važna oblast primjenjene matematike je vjerovatnoća i statistika koja se bavi izučavanjem i predviđanjem slučajnosti i slučajnih pojava. Numerička analiza izučava numeričke metode izračunavanja a diskretna matematika je zajedničko ime za oblasti matematike koje se koriste u računarskim naukama....

Prikaži sve...
990RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Razumevanje sistema numeracije Matematika (lat. [ars] mathematica < grč. μαϑηματιϰὴ [τέχνη]: matematičko [umijeće], prema μάϑημα: nauk; znanje),[3] je nauka koja izučava prirodu koristeći logiku.[4] Izučavane strukture najčešće potiču iz drugih prirodnih nauka, najčešće fizike, ali neke od struktura su definisane i izučavane radi internih razloga.[5][6][7] Istorijski, matematika se razvila iz potrebe da se obavljaju proračuni u trgovini, vrše mjerenja zemljišta i predviđaju astronomski događaji, i ove tri primjene se mogu dovesti u vezu sa grubom podjelom matematike u izučavanje strukture, prostora i izmjena.[8] Izučavanje strukture počinje sa brojevima, u početku sa prirodnim brojevima i cijelim brojevima.[9] Osnovna pravila za aritmetičke operacije su definisana u osnovnoj algebri a dodatna svojstva cijelih brojeva se izučavaju u teoriji brojeva. Izučavanje metoda za rješavanje jednačina je dovelo do razvoja apstraktne algebre koja između ostalog izučava prstenove i polja, strukture koje generalizuju osobine koje posjeduju brojevi.[10] Fizikalno važan koncept vektora se izučava u linearnoj algebri. Izučavanje prostora je počelo sa geometrijom, prvo Euklidovom geometrijom i trigonometrijom u pojmljivom trodimenzionalnom prostoru, ali se kasnije proširila na neeuklidske geometrije koje imaju centralnu ulogu u opštoj relativnosti. Moderna polja geometrije su diferencijalna geometrija i algebarska geometrija. Teorija grupa izučava koncept simetrije, i predstavlja vezu u u izučavanju prostora i strukture. Topologija povezuje izučavanje prostora i izmjene fokusirajući se na koncept kontinuiteta. Razumjevanje i opisivanje izmjena mjerljivih varijabli je glavna značajka prirodnih nauka, i diferencijalni račun je razvijen u te svrhe.[11] Centralni koncept kojim se opisuje promjena varijable je funkcija. Mnogi prirodni problemi su vodili uspostavljanju veze između vrijednosti i količine izmjene, i metodi razvijeni pri tome, se izučavaju u diferencijalnim jednačinama. Brojevi koji predstavljaju kontinualne veličine su realni brojevi, i detaljno izučavanje njihovih svojstava i funkcija je predmet analize. Zbog matematskih razloga, uveden je koncept kompleksnih brojeva koji se izučavaju u kompleksnoj analizi. Funkcionalna analiza je skoncetrisana na n-dimenzionalne prostore funkcija postavljajući time osnovu za izučavanje kvantne mehanike.[12] Radi pojašnjavanja i izučavanja osnova matematike, razvijene su oblasti teorija skupova, matematička logika i teorija modela. Važna oblast primjenjene matematike je vjerovatnoća i statistika koja se bavi izučavanjem i predviđanjem slučajnosti i slučajnih pojava. Numerička analiza izučava numeričke metode izračunavanja a diskretna matematika je zajedničko ime za oblasti matematike koje se koriste u računarskim naukama....

Prikaži sve...
1,290RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! The New Mathematics Dictionary and Handbook - Robert W. Marks Matematika (lat. [ars] mathematica < grč. μαϑηματιϰὴ [τέχνη]: matematičko [umijeće], prema μάϑημα: nauk; znanje),[3] je nauka koja izučava prirodu koristeći logiku.[4] Izučavane strukture najčešće potiču iz drugih prirodnih nauka, najčešće fizike, ali neke od struktura su definisane i izučavane radi internih razloga.[5][6][7] Istorijski, matematika se razvila iz potrebe da se obavljaju proračuni u trgovini, vrše mjerenja zemljišta i predviđaju astronomski događaji, i ove tri primjene se mogu dovesti u vezu sa grubom podjelom matematike u izučavanje strukture, prostora i izmjena.[8] Izučavanje strukture počinje sa brojevima, u početku sa prirodnim brojevima i cijelim brojevima.[9] Osnovna pravila za aritmetičke operacije su definisana u osnovnoj algebri a dodatna svojstva cijelih brojeva se izučavaju u teoriji brojeva. Izučavanje metoda za rješavanje jednačina je dovelo do razvoja apstraktne algebre koja između ostalog izučava prstenove i polja, strukture koje generalizuju osobine koje posjeduju brojevi.[10] Fizikalno važan koncept vektora se izučava u linearnoj algebri. Izučavanje prostora je počelo sa geometrijom, prvo Euklidovom geometrijom i trigonometrijom u pojmljivom trodimenzionalnom prostoru, ali se kasnije proširila na neeuklidske geometrije koje imaju centralnu ulogu u opštoj relativnosti. Moderna polja geometrije su diferencijalna geometrija i algebarska geometrija. Teorija grupa izučava koncept simetrije, i predstavlja vezu u u izučavanju prostora i strukture. Topologija povezuje izučavanje prostora i izmjene fokusirajući se na koncept kontinuiteta. Razumjevanje i opisivanje izmjena mjerljivih varijabli je glavna značajka prirodnih nauka, i diferencijalni račun je razvijen u te svrhe.[11] Centralni koncept kojim se opisuje promjena varijable je funkcija. Mnogi prirodni problemi su vodili uspostavljanju veze između vrijednosti i količine izmjene, i metodi razvijeni pri tome, se izučavaju u diferencijalnim jednačinama. Brojevi koji predstavljaju kontinualne veličine su realni brojevi, i detaljno izučavanje njihovih svojstava i funkcija je predmet analize. Zbog matematskih razloga, uveden je koncept kompleksnih brojeva koji se izučavaju u kompleksnoj analizi. Funkcionalna analiza je skoncetrisana na n-dimenzionalne prostore funkcija postavljajući time osnovu za izučavanje kvantne mehanike.[12] Radi pojašnjavanja i izučavanja osnova matematike, razvijene su oblasti teorija skupova, matematička logika i teorija modela. Važna oblast primjenjene matematike je vjerovatnoća i statistika koja se bavi izučavanjem i predviđanjem slučajnosti i slučajnih pojava. Numerička analiza izučava numeričke metode izračunavanja a diskretna matematika je zajedničko ime za oblasti matematike koje se koriste u računarskim naukama....

Prikaži sve...
990RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Matematika (lat. [ars] mathematica < grč. μαϑηματιϰὴ [τέχνη]: matematičko [umijeće], prema μάϑημα: nauk; znanje),[3] je nauka koja izučava prirodu koristeći logiku.[4] Izučavane strukture najčešće potiču iz drugih prirodnih nauka, najčešće fizike, ali neke od struktura su definisane i izučavane radi internih razloga.[5][6][7] Istorijski, matematika se razvila iz potrebe da se obavljaju proračuni u trgovini, vrše mjerenja zemljišta i predviđaju astronomski događaji, i ove tri primjene se mogu dovesti u vezu sa grubom podjelom matematike u izučavanje strukture, prostora i izmjena.[8] Izučavanje strukture počinje sa brojevima, u početku sa prirodnim brojevima i cijelim brojevima.[9] Osnovna pravila za aritmetičke operacije su definisana u osnovnoj algebri a dodatna svojstva cijelih brojeva se izučavaju u teoriji brojeva. Izučavanje metoda za rješavanje jednačina je dovelo do razvoja apstraktne algebre koja između ostalog izučava prstenove i polja, strukture koje generalizuju osobine koje posjeduju brojevi.[10] Fizikalno važan koncept vektora se izučava u linearnoj algebri. Izučavanje prostora je počelo sa geometrijom, prvo Euklidovom geometrijom i trigonometrijom u pojmljivom trodimenzionalnom prostoru, ali se kasnije proširila na neeuklidske geometrije koje imaju centralnu ulogu u opštoj relativnosti. Moderna polja geometrije su diferencijalna geometrija i algebarska geometrija. Teorija grupa izučava koncept simetrije, i predstavlja vezu u u izučavanju prostora i strukture. Topologija povezuje izučavanje prostora i izmjene fokusirajući se na koncept kontinuiteta. Razumjevanje i opisivanje izmjena mjerljivih varijabli je glavna značajka prirodnih nauka, i diferencijalni račun je razvijen u te svrhe.[11] Centralni koncept kojim se opisuje promjena varijable je funkcija. Mnogi prirodni problemi su vodili uspostavljanju veze između vrijednosti i količine izmjene, i metodi razvijeni pri tome, se izučavaju u diferencijalnim jednačinama. Brojevi koji predstavljaju kontinualne veličine su realni brojevi, i detaljno izučavanje njihovih svojstava i funkcija je predmet analize. Zbog matematskih razloga, uveden je koncept kompleksnih brojeva koji se izučavaju u kompleksnoj analizi. Funkcionalna analiza je skoncetrisana na n-dimenzionalne prostore funkcija postavljajući time osnovu za izučavanje kvantne mehanike.[12] Radi pojašnjavanja i izučavanja osnova matematike, razvijene su oblasti teorija skupova, matematička logika i teorija modela. Važna oblast primjenjene matematike je vjerovatnoća i statistika koja se bavi izučavanjem i predviđanjem slučajnosti i slučajnih pojava. Numerička analiza izučava numeričke metode izračunavanja a diskretna matematika je zajedničko ime za oblasti matematike koje se koriste u računarskim naukama....

Prikaži sve...
1,490RSD
forward
forward
Detaljnije

Ervin Sredinger i nauka naseg veka Zbornik radova sa simpozijuma povodom stogodisnjice rodjenja 1987. Uredila Mirjana Bozic Institut za fiziku, Beograd, 1987. Mek povez, 138 strana. RETKO! ERVIN ŠREDINGER Ervin Rudolf Jozef Aleksander Šredinger (nem. Erwin Rudolf Josef Alexander Schrödinger; Beč, 12. avgust 1887 — Beč, 4. januar 1961) bio je austrijski teorijski fizičar. Rođen je kao sin jedinac dobro obrazovanih roditelja. Do 11. godine obrazovao se kod kuće, a nakon toga je pohađao školu kako bi se pripremio za Bečki univerzitet.[1] Tamo je diplomirao fiziku a na Univerzitetu je ostao do Prvog svetskog rata, u kojem je učestvovao na italijanskom frontu. Nakon rata se vratio u Beč gde se oženio i 1921. dobio poziciju teorijskog fizičara na univerzitetu u Cirihu. Šest godina koje je tu proveo bile su među najproduktivnijim u njegovoj karijeri, iako je na mehanici talasa počeo da radi tek 1925. Već 1926. objavio je svoj rad gde kretanje elektrona u atomu opisuje kao talasnu funkciju. Godine 1927. dobio je veliko priznanje, kada su ga pozvali na Berlinski univerzitet gde je trebalo da zameni Maksa Planka. Tamo je ostao do 1933. kada je zbog dolaska nacista na vlast otišao na Oksford. Iste godine je podelio Nobelovu nagradu za fiziku sa Polom Dirakom. Godine 1938. vratio se u Austriju, ali pošto je nacistička Nemačka izvršila pripajanje Austrije, otišao je u Dablin gde se bavio filozofijom fizike. Godine 1960. se vratio u Beč gde je godinu dana kasnije umro. Šredingerova jednačina kretanja elektrona je osnovna jednačina u nerelativističkoj kvantnoj mehanici. Potpuno odbacuje pokušaje da se kretanje elektrona odvija po određenim putanjama u atomu i nastoji da opiše njihovo kretanje isključivo talasnim svojstvima. U nekom trenutku verovatnoća da se elektron nađe u nekoj tački prostora srazmerna je kvadratu apsolutne vrednosti talasne funkcije. Talasna funkcija se menja zavisno od kvantizacije elektrona. Pomoću te jednačine, u principu, moguće je dobiti kvantnofizički model svakog atoma. Ipak, tu jednačinu je izrazito teško rešiti pa egzaktno, analitičko rešenje postoji samo za atom vodonika, dok se za sve ostale atome vrše numeričke aproksimacije. Biografija Mladost Ervin Rudolf Josef Aleksander Šredinger[2] rođen je 12. avgusta 1887. u Beču kao sin Rudolfa Šredingera, botaničara,[3][4] i Georgine Emilije Brende Šredinger.[5][6][7] Njegova majka bila je austrijsko-engleskog porekla.[8] Mladi Ervin je skoro istodobno učio i engleski i nemački zbog činjenice da su se oba jezika govorila u kući. Otac mu je bio katolik, a majka luteranka. Mada je odgajen u religioznoj porodici, on je bio ateista.[9][10] Godine 1898. počinje svoje obrazovanje na Akademisches Gymnasiumu. Između 1906. i 1910. obrazovao se u Beču, a glavni mentori bili su mu Franc Serafin Eksner i Fridrih Hasenehrl.[11] Tokom tih studija obavio je i eksperimente sa Fridrihom Kohlraušom. Godine 1911. postaje asistent Eksneru na univerzitetu. Srednje godine Godine 1914. Šredinger je dostigao akademski status znan kao venia legendi. Od 1914. do 1918, učestvovao je u ratu kao oficir austrijske vojske. Dana 6. aprila 1920. oženio se s Anamarijom Bertel.[12] Iste godine postao je asistent Maksu Vinu u Jeni, a malo nakon doga je postao i vanredni profesor u Štutgartu. Godine 1921. postao je redovni profesor u Vroclavu. Godine 1922. počeo je da studira na univerzitetu u Cirihu. U januaru 1926. u časopisu Annalen der Physik izdaje članak Quantisierung als Eigenwertproblem (nemački: Kvantizacija vlastite vrednosti) na temu talasne mehanike.[13] Taj rad znan je kao Šredingerova jednačina. U članku je dao derivaciju talasne jednačine za vremenski nezavisne sisteme i pokazalo sa da je dao tačnu energetsku vlastitu vrednost za atom sličan vodoniku. Ovaj članak slavljen je kao jedan od najvažnijih naučnih radova 20. veka, a napravio je i revoluciju u kvantnoj mehanici, te uopšteno u celoj fizici i hemiji. Četiri nedelje kasnije, Šredinger izdaje još jedan članak koji je rešio kvantni harmonijski oscilator, kruti rotor i dvoatomne molekule, a dao je i novu derivaciju njegovoj jednačini. Treći članak, iz maja, prikazao je ekvivalentnost pristupa sličnog onom koji je primenjivao Verner Hajzenberg, a dao je i obradu Starkovog učinka. Četvrti članak, iz ove impresivne serije, dao je način rešavanja problema u kojima se sistem menja s vremenom. Ova četiri članak predstavljaju vrhunac Šredingerovog naučnog rada i odmah su uvršteni među najvažnije naučne radove u fizici. Peta Solvejska konferencija 1927; Šredinger se može videti kako stoji u zadnjem redu (šesti zdesna). Godine 1927. Šredinger je zamenio Maksa Planka na mestu profesora na berlinskom univerzitetu Fridrih Vilhelm. Međutim, 1933. Šredinger napušta novonastali Treći rajh zbog antisemitizma. Postao je profesor na koledžu Magdalen na univerzitetu u Oksfordu. Godine 1933. podelio je Nobelovu nagradu za fiziku s Polom Dirakom zbog svog doprinosa u razvoju talasne mehanike. Uprkos njegovom naučnom uspehu, njegov privatni život doveo je do toga da bude otpušten s Oksforda. Godine 1934. trebalo je da ide da predaje na Prinstonu, ali je to odbio. Sledeća postaja trebalo je da bude univerzitet u Edinburgu, međutim zbog problema s vizom nije otputovao u Škotsku, a 1936. prihvata posao na univerzitetu u Gracu. On je takođe prihvatio ponudu za poziciju šefa Departmana za fiziku, Alahabad univerzitetu u Indiji.[14] Kasne godine Godine 1938, nakon što je Hitler okupirao Austriju, Šredinger je imao problema jer je 1933. pobegao iz Trećeg rajha i jer je bio otvoren protivnik nacizma.[15] Kasnije je porekao sve ovo, ali ubrzo je povukao izjavu i lično se izvinio Ajnštajnu.[16] To nije smirilo strasti pa je Šredinger otpušten sa univerziteta pod izgovorom političke nevjerodostojnosti. Bio je maltretiran i savetovano mu je da ne napušta zemlju. On i njegova supruga pobegli su u Italiju. Iz Italije je putovao na univerzitet u Oksfordu i Gentu.[15][16] Godine 1940. dobio je pozivnicu da pomogne u osnivanju Instituta za napredne studije u Dublinu. Otputovao je tamo i dobio posao direktora Škole za teoretsku fiziku.[17] Na toj poziciji ostao je 17 godina. Tokom tog mandata postao je i naturalizirani državljanin Irske. Tokom ovog perioda je napisao preko 50 radova na razne teme,[18] a među najvažnije spadaju oni o njegovim istraživanjima ujedinjene teorije polja. Godine 1944. napisao je delo Šta je život?, koje sadrži raspravu o negentropiji i koncept kompleksnog molekula koja sadrži genetski kod za žive organizme.[19] Prema memoarima Džejmesa D. Votsona, DNA, tajna života, Šredingerova knjiga inspirisala je Votsona da prouči gen, što je dovelo i do otkrića strukture molekula DNK. Slično Votsonu, Fransis Krik, Votsonov saradnik, u svojoj autobiografiji piše kako je su Šredingerove spekulacije o tome kako se genetska uputstva čuvaju u molekulima uticala na njega. Šredinger je u Dablinu ostao sve do svog penzionisanja 1955. Tokom ovog perioda Šredinger je zapadao u skandale: imao je mnoge afere sa studentkinjama, a imao je decu dvema Irkinjama.[20] Njegov unuk, profesor Teri Rudolf, sledi Šredingerove korake kao kvantni fizičar koji predaje na Imperijalnom koledžu London.[21][22] Šredinger je imao doživotni interes za hinduističku filozofiju Vedanta.[23] Ta filozofija uticaja je i na kraj knjige Šta je to život? gde Šredinger piše o mogućnosti da je individualna svest samo manifestacija jedinstvene svesti koja prodire u svemir.[24] Godine 1956. vraća se u Beč. Na važnom predavanju tokom Svetske energetske konferencije, Šredinger je odbio da održi predavanje o nuklearnoj energiji zbog svog skepticizma prema njoj, te je umesto toga održao jedno filozofsko predavanje. Tokom ovog perioda Šredinger se udaljio od definicije talasne dužine koju je davala kvantna mehanika, te je samostalno promovisao ideju o talasima što je uzrokovalo mnoge kontroverze. Privatni život Sedma Solvejska konferencija 1933, održana u Briselu. Šredinger se može vidjeti kako sedi (prvi sleva). Godine 1933, Šredinger je odlučio da ne može da živi zemlji u kojoj je progon Židova deo politike te države. Aleksander Frederik Lindeman, vođa katedre za fiziku na Oksfordu, posećuje Treći rajh u proleću 1933. kako bi pokušao osigurati posao za neke mlade židovske naučnike. Sa Šredingerom je popričao o poslu za njegovog asistenta, ali tada je, na njegovo iznenađenje, saznao da i sam Šredinger planira napustiti Rajh. Šredinger je takođe uputio molbu da njegov asistent bude Artur Marč. Zahtev da mu Marč bude asistent proizlazio je iz Šredingerovih nekonvencionalnih veza s ženama. Šredingerova veza s njegovom suprugom nikad nije bila dobra,[25] te je imao mnoge afere za koje je njegova supruga znala. Međutim, i Ana je imala svog ljubavnika - Šredingerovog prijatelja Hermana Vajla. Šredinger je želio da mu Marč bude asistent, jer je tada bio zaljubljen u Marčovu suprugu Hildu. Većina naučnika koji su pobegli iz Rejha, leto 1933. su proveli u provinciji Južni Tirol. Tu je Šredinger imao dete s Marčovom suprugom Hildom. Dana 4. novembra 1933, Šredinger, njegova supruga Ana i Marčova supruga Hilda stižu u Oksford. Po dolasku, dobio je posao na koledžu Magdalen. Ubrzo nakon što je došao u Oksford, Šredinger je saznao da je zbog svog rada na području talasne mehanike, dobio Nobelovu nagradu za fiziku. Tu nagradu podelio je s Polom Dirakom. Na početku 1934, Šredinger je pozvan da održi predavanje na univerzitetu Prinston, a ubrzo nakon održanog predavanja ponuđena mu je i pozicija predavača. Po povratku u Oksford pregovarao je oko finansijske strane posla na Prinstonu, ali na kraju je odbio i ostao u Engleskoj. Pretpostavlja se da je njegova želja da Ana i Hilda odgajaju njegovo dete u Prinstonu bila neostvariva. Međutim, činjenica da Šredinger nije skrivao svoju vezu s dve žene istodobno,[26] čak i ako je jedna od njih bila udata za drugog čoveka, nije dobro prihvaćena ni na Oksfordu.[27] Uprkos svemu ovome, njegova kći Rut Džordži Erika rođena je u Oksfordu 30. maja 1934.[28] Smrt i ostavština Bista Ervina Šredingera. Ervin Šredinger je umro 4. januara 1961. u Beču, u 73. godini života, od posljedica tuberkuloze. Sahranjen je u mestu Alpbah. Za sobom je ostavio udovicu Anu. Enormni krater Šredinger na Mesecu posthumno je nazvan po njemu, a 1993, u njegovu čast, u Beču je utemeljen Međunarodni institut za matematičku fiziku Ervin Šredinger. Boja Iako je Šredinger puno poznatiji po svojim radovima na polju kvantne mehanike, radio je i sa bojama. Godine 1920. izdao je tri članka o toj temi: `Theorie der Pigmente von größter Leuchtkraft,` Annalen der Physik, (4), 62, (1920), 603-622 `Grundlinien einer Theorie der Farbenmetrik im Tagessehen,` Annalen der Physik, (4), 63, (1920), 397-426; 427-456; 481-520 `Farbenmetrik,` Zeitschrift für Physik, 1, (1920), 459-466

Prikaži sve...
1,079RSD
forward
forward
Detaljnije

ANALOGNA ELEKTRONIKA I PROJEKTI SA MIKROKONTROLERIMA! Hobi elektroničarima može biti zanimljivo da nauče nove veštine koje mogu koristiti u karijeri. Oni koji razumeju osnove elektronike mogu praviti sopstvena kola i projekte. Ipak pre nego što potrčite potrebno je naučiti da hodate. Počinje sa analognom elektronikom. Trebalo bi da se upoznate sa jednostavnim komponentama i kolima, i razumete njihove osnovne osobine i ponašanje, kao i probleme sa kojima bi mogli da se susrećete. Najbolji način da to uredite je preko eksperimenata. Sama teorija nije dovoljna. Knjiga nudi veliki broj praktičnih početničkih kola koje svako može sastaviti sa osnovnim iskustvom. U elektronici je počelo novo poglavlje sa širenjem primene mikrokontrolera. Mikrokontroleri sada izvode sve više zadataka koji su ranije bili rešavani korišćenjem diskretnih komponenata i konvencionalnih, standardnih integrisanih kola. Rad sa mikrokontrolerima je postajao sve lakši i lakši zahvaljujući platformama kao što su Bascom, Arduino, Micro:bit. U knjizi su predstavljane brojne primene mikrokontrolera kojima se lako upravlja. Sada imamo slučaj elektronike sa manje lemljenja a više programiranja Kompletna knjiga je u koloru! Kratak sadržaj Deo 1 • Analogna elektronika Poglavlje 1 • Elektronika za početnike (1) Poglavlje 2 • Elektronika za početnike (2) Poglavlje 3 • Elektronika za početnike (3) Poglavlje 4 • Elektronika za početnike (4) Poglavlje 5 • Elektronika za početnike (5) Poglavlje 6 • Elektronika za početnike (6) Poglavlje 7 • Elektronika za početnike (7) Poglavlje 8 • Elektronika za početnike (8) Poglavlje 9 • Elektronika za početnike (9) Poglavlje 10 • Elektronika za početnike (10) Poglavlje 11 • Operacioni pojačavači u praksi Poglavlje 12 • Operacioni pojačavači u praksi Poglavlje 13 • Operacioni pojačavači u praksi Poglavlje 14 • Granične vrednosti EMV-EMC i CE deklaracija Poglavlje 15 • LED-LDR ring oscilator Poglavlje 16 • Piko ampermetar Poglavlje 17 • LC oscilator sa podešavanjem uz pomoć potenciometra Poglavlje 18 • Merenje radijacije sa FET-om Poglavlje 19 • “zelena” solarna lampa Poglavlje 20 • Održavanje baterije Poglavlje 21 • Naponski pretvarač sa jednim tranzistorom Poglavlje 22 • Analogno trčeće LED svetlo Poglavlje 23 • Eksperimentalni Hall senzor Poglavlje 24 • Jednostavni Dip metar Poglavlje 25 • Širokopojasni prijemnik za varničar Poglavlje 26 • Ring oscilator Poglavlje 27 • LED višestruka bljeskalica Poglavlje 28 • Audion sa emiterskim sledilom Poglavlje 29 • Relaksacioni oscilatori sa NPN tranzistorima Poglavlje 30 • Merenje Gama zraka sa foto diodom Poglavlje 31 • Kratkotalasni regenerativni prijemnik Poglavlje 32 • DRM superheterodini prijemnik (digitalni radio) Poglavlje 33 • Tranzistorski Dip metar Poglavlje 34 • DRM sa direktnim mikserom upotrebom cevi EF95/6AKS Poglavlje 35 • Modulator srednjih talasa Poglavlje 36 • EE večni treptač Poglavlje 37 • Kratkotalasni super regenerativni prijemnik Poglavlje 38 • Kratkotalasni pretvarač Deo 2 • Mikrokontroler Poglavlje 39 • Osnove osnova (1) Poglavlje 40 • Osnove osnova Mikrokontrolera (2) Poglavlje 41 • Osnove osnova Mikrokontrolera (3) Poglavlje 42 • Osnove osnova Mikrokontrolera (4) Poglavlje 43 • Osnove osnova Mikrokontrolera (5) Poglavlje 44 • Osnove osnova Mikrokontrolera (6) Poglavlje 45 • Osnove osnova Mikrokontrolera (7) Poglavlje 46 • Senzori imaju smisla (1) Poglavlje 47 • Senzori imaju smisla (2) Poglavlje 48 • Senzori imaju smisla (3) Poglavlje 49 • Senzori imaju smisla (4) Poglavlje 50 • Uputstvo za početnike za rad sa razvojnim okruženjem Poglavlje 51 • BBC micro:bit za elektroničare (1) Poglavlje 53 • RF detektor uz pomoć Arduino Poglavlje 54 • Merenje otpornosti sa Arduino Poglavlje 55 • AM predajnik uz pomoć Arduino Poglavlje 56 • Bezbednosne nalepnice kao ključ BURKHARD KAINKA je rođen 1953, radio amater sa pozivnim znakom DK7JD. Više godina je radio kao nastavnik fizike a od 1996 je samostalni razvojni inženjer i autor knjiga iz oblasti elektronike i mikrokontrolera. Između ostalih projekta održava stranice www.elektroniklabor.de i www.b-kainka.de

Prikaži sve...
2,310RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Unutrasnjost u super stanju! Ilustracije: Nedeljko Dragic Matematika (grč. μαθηματική što znači učenje) je formalna i egzaktna nauka, koja je nastala izučavanjem figura i računanjem s brojevima.[3][4] Iako ne postoji opšteprihvaćena definicija matematike, pod matematikom se u širem smislu podrazumeva da je ona nauka o količini (aritmetika), strukturi (algebra), prostoru (geometrija) i promeni (analiza).[5] Matematika je nauka koja izučava aksiomatski definisane apstraktne strukture koristeći logiku.[6] Izučavane strukture najčešće potiču iz drugih prirodnih nauka, najčešće fizike, ali neke od struktura su definisane i izučavane radi internih razloga.[7] Istorijski, matematika se razvila iz potrebe da se obavljanja proračuna u trgovini, vršenje merenja zemljišta i predviđanje astronomskih događaja. Ove tri početne primene matematike se mogu dovesti u vezu sa grubom podelom matematike na izučavanje strukture, prostora i promena.[8][9] Izučavanje strukture počinje sa brojevima, u početku sa prirodnim brojevima i celim brojevima.[4] Osnovna pravila za aritmetičke operacije su definisana u osnovnoj algebri a dodatna svojstva celih brojeva se izučavaju u teoriji brojeva. Izučavanje metoda za rešavanje jednačina je dovelo do razvoja apstraktne algebre koja između ostalog izučava prstenove i polja, strukture koje generalizuju osobine koje poseduju brojevi.[10] Fizički važan koncept vektora se izučava u linearnoj algebri. Izučavanje prostora je počelo sa geometrijom, prvo Euklidovom geometrijom i trigonometrijom u pojmljivom trodimenzionalnom prostoru, ali se kasnije proširila na neeuklidske geometrije koje imaju centralnu ulogu u opštoj relativnosti. Moderna polja geometrije su diferencijalna geometrija i algebarska geometrija. Teorija grupa izučava koncept simetrije, i predstavlja vezu u u izučavanju prostora i strukture. Topologija povezuje izučavanje prostora i izmjene fokusirajući se na koncept kontinuiteta. Razumevanje i opisivanje izmena merljivih promenljivih je glavna karakteristika prirodnih nauka, i diferencijalni račun je razvijen u te svrhe.[11] Centralni koncept kojim se opisuje promena varijable je funkcija. Mnogi prirodni problemi su vodili uspostavljanju veze između vrednosti i količine izmene, i metodi razvijeni pri tome, se izučavaju u diferencijalnim jednačinama. Brojevi koji predstavljaju kontinualne veličine su realni brojevi, i detaljno izučavanje njihovih svojstava i funkcija je predmet analize. Zbog matematskih razloga, uveden je koncept kompleksnih brojeva koji se izučavaju u kompleksnoj analizi. Funkcionalna analiza je skoncentrisana na n-dimenzionalne prostore funkcija postavljajući time osnovu za izučavanje kvantne mehanike.[12] Radi pojašnjavanja i izučavanja osnova matematike, razvijene su oblasti teorija skupova, matematička logika i teorija modela. Važna oblast primenjene matematike je verovatnoća i statistika koja se bavi izučavanjem i predviđanjem slučajnosti i slučajnih pojava. Numerička analiza izučava numeričke metode izračunavanjem a diskretna matematika je zajedničko ime za oblasti matematike koje se koriste u računarskim naukama.

Prikaži sve...
590RSD
forward
forward
Detaljnije

Metafizika astrologije - Ivan Antić Autor:: Ivan Antić Žanrovi:: Domaći pisci, Ezoterija Izdavač:: Aruna Godina izdanja:: 2020. Broj strana: 78 Pismo: Latinica Povez: Mek Format: 21 cm -vrlo dobro ocuvana ,ima samo malo podvlacenja teksta na pocetku knjige ,lagano obicnom olovkom Za razliku od većine knjiga o astrologiji, ova nema za cilj da se bavi osnovnim principima neophodnim u tumačenju horoskopa. Takvih knjiga, dobrih i loših, ima dovoljno. Ovde će biti reči o tome zašto astrologija uopšte deluje i kako su nastali njeni osnovni principi. Takođe, na koji se način prostorvreme kosmosa uobličava u nama (ne)poznato postojanje, u planete, sâm život i sudbinu. Da bismo se približili ovoj viziji koja objedinjuje mikro i makrokosmos, koliko je to u našoj moći, koristićemo se izvesnim dostignućima teorijske fizike. Astrologija je od davnina poznata kao kraljica svih nauka. Njen zodijački krug je kao vir u koji se ulivaju sva iskustva postojanja. Nećemo ih nabrajati, već ćemo se usredsrediti samo na neka najnovija, uz naglasak na iskustvo ličnog viđenja. Osnovne teorije fizikalne realnosti kojih ćemo se ovde doticati prilikom razjašnjavanja suštine astroloških uticaja a koje se nadopunjuju, su teorija o hologramskom univerzumu i teorija Jačeg antropičkog principa. One tvrde da univerzum, ovakav kakav jeste, postoji zbog uobličavanja svesnog subjekta, odnosno nas samih. Moja je spoznaja da astrologija pokazuje sve detalje tog uobličavanja, i to za svaku individuu ponaosob. Stoga, naglasak na ličnom iskustvu ne treba da deluje zabrinjavajuće već podsticajno, jer se samo iz takve perspektive može sagledati smisao astrologije. Budući da ona detaljno prikazuje kako se iz prirodne celine formira ličnost, njena se svrsishodnost ne može drugačije izraziti nego kao lično iskustvo. Kriterijum osvešćenja i samospoznaje biće jedino merilo prilikom iznošenja svih objektivnih činjenica koje sadrži astrologija. Drugim rečima, budući da objektivni svet stvara i kroz celokupna iskustva usavršava svesnog subjekta, da celina univerzuma spoznaje sebe kroz prosvetljenog subjekta, i da je njegova celovita ličnost oličenje smisla postojanja svega, subjekat koji ovo piše neće iznositi ništa svoje, lično, već će samo dozvoliti da celina, kroz njegove ograničene moći izražavanja, izrazi samu sebe (kutija 7)

Prikaži sve...
599RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Prvo izdanje !!! Fizika Metala Frederick Seitz (4. srpnja 1911. - 2. ožujka 2008.) bio je američki fizičar, lobist duhanske industrije, poricatelj klimatskih promjena i bivši čelnik Nacionalne akademije znanosti Sjedinjenih Država. Seitz je bio 4. predsjednik Sveučilišta Rockefeller od 1968. do 1978. i 17. predsjednik Nacionalne akademije znanosti Sjedinjenih Država od 1962. do 1969. Seitz je bio dobitnik Nacionalne medalje za znanost, NASA-ine nagrade za istaknute javne usluge i drugih počasti . Osnovao je Laboratorij za istraživanje materijala Frederick Seitz na Sveučilištu Illinois u Urbana-Champaignu i nekoliko drugih laboratorija za istraživanje materijala diljem Sjedinjenih Država.[1][2] Seitz je također bio osnivač i predsjednik Instituta George C. Marshall [3], konzultant za duhansku industriju i istaknuti poricatelj klimatskih promjena. Pozadina i osobni život Rođen u San Franciscu 4. srpnja 1911., Seitz je diplomirao u srednjoj školi Lick-Wilmerding sredinom zadnje godine, te nastavio studirati fiziku na Sveučilištu Stanford i stekao diplomu prvostupnika za tri godine, [1] diplomirao je 1932. [4] Oženio se s Elizabeth K. Marshall 18. svibnja 1935. [5] Seitz je umro 2. ožujka 2008. u New Yorku.[6][7] Iza sebe je ostavio sina, troje unučadi i četiri praunučadi.[6] Početak karijere Konstrukcija Wigner–Seitz primitivne ćelije. Seitz se preselio na Sveučilište Princeton kako bi studirao metale kod Eugenea Wignera [1], stekavši doktorat 1934. [6] [8] On i Wigner su bili pioniri jedne od prvih kvantnih teorija kristala i razvili su koncepte u fizici čvrstog stanja kao što je Wigner-Seitz jedinična ćelija[1] koja se koristi u proučavanju kristalnog materijala u fizici čvrstog stanja. Akademska karijera Nakon diplomskog studija, Seitz je nastavio raditi na fizici čvrstog stanja, objavivši The Modern Theory of Solids 1940. godine, motiviran željom da `napiše kohezivni prikaz različitih aspekata fizike čvrstog stanja kako bi tom području dao vrstu jedinstvo koje zaslužuje`. Moderna teorija čvrstih tijela pomogla je objediniti i razumjeti odnose između polja metalurgije, keramike i elektronike. Također je bio konzultant na mnogim projektima povezanim s Drugim svjetskim ratom u metalurgiji, radijacijskim oštećenjima krutih tvari i elektronici, između ostalog. On je, zajedno s Hillardom Huntingtonom, napravio prvi izračun energija formiranja i migracije praznina i intersticijala u bakru, inspirirajući mnoge radove o točkastim defektima u metalima.[1] Opseg njegovih objavljenih radova bio je širok, također pokrivajući `spektroskopiju, luminiscenciju, plastičnu deformaciju, učinke zračenja, fiziku metala, samodifuziju, točkaste defekte u metalima i izolatorima, te znanstvenu politiku`.[1] Na početku svoje akademske karijere, Seitz je radio na fakultetu Sveučilišta u Rochesteru (1935.-37.)[4], a nakon pauze kao istraživač fizičar u General Electric Laboratories (1937.-39.)[4] bio je na Sveučilištu u Pennsylvania (1939. – 1942.), a zatim Carnegie Institute of Technology (1942. – 1949.).[4] Od 1946. do 1947. Seitz je bio direktor programa obuke za atomsku energiju u Nacionalnom laboratoriju Oak Ridge. Imenovan je profesorom fizike na Sveučilištu Illinois, Urbana-Champaign, 1949. godine, postavši predstojnik odjela 1957. te dekan i potpredsjednik za istraživanje 1964. Seitz je također služio kao savjetnik NATO-a.[6] Od 1962. do 1969. Seitz je služio kao predsjednik Nacionalne akademije znanosti Sjedinjenih Država (NAS), s punim radnim vremenom od 1965. [9]. Kao predsjednik NAS-a inicirao je Sveučilišnu istraživačku udrugu, koja je sklopila ugovor s Komisijom za atomsku energiju za izgradnju najvećeg akceleratora čestica na svijetu u to vrijeme, Fermilaba.[1] Bio je predsjednik Sveučilišta Rockefeller od 1968. do 1978. tijekom kojeg je pomogao u pokretanju novih istraživačkih programa u molekularnoj biologiji, staničnoj biologiji i neuroznanosti kao i stvaranju zajedničkog MD-PhD programa sa Sveučilištem Cornell.[6] Povukao se sa Sveučilišta Rockefeller 1979., kada je postao predsjednik emeritus. Konzultantska karijera Nakon što je Seitz objavio rad o tamnjenju kristala, DuPont ga je 1939. zamolio za pomoć oko problema koji su imali sa postojanošću krom žute boje. Postao je `duboko uključen` u njihove istraživačke napore.[10] Između ostalog, istraživao je moguću upotrebu netoksičnog silicijevog karbida kao bijelog pigmenta.[11] Seitz je bio direktor Texas Instrumentsa (1971.-1982.) i Akzona Corporationa (1973.-1982.).[12] Nedugo prije svog umirovljenja 1979. sa Sveučilišta Rockefeller, Seitz je počeo raditi kao stalni konzultant za R.J. Reynolds Tobacco Company, koja je savjetovala njihov program medicinskog istraživanja [13] do 1988. [6] Reynolds je prethodno pružio `vrlo velikodušnu` potporu za biomedicinski rad u Rockefelleru.[14] Seitz je kasnije napisao da je `sav novac potrošen na temeljnu znanost, medicinsku znanost,` i ukazao na istraživanje kravljeg ludila i tuberkuloze koje je financirao Reynolds.[6] Ipak, kasnije akademske studije o utjecaju duhanske industrije zaključile su da je Seitz, koji je pomogao u dodjeli 45 milijuna dolara Reynoldsovog financiranja istraživanja, [15] `odigralo je ključnu ulogu... u pomaganju duhanskoj industriji da proizvede nesigurnost u pogledu utjecaja pušenja na zdravlje.` [16] Prema dopisu duhanske industrije iz 1989., Seitz je opisan kao zaposlenika Philip Morris Internationala kao `prilično starijeg i nedovoljno racionalnog da ponudi savjet.`[17] Godine 1984. Seitz je bio osnivački predsjednik Instituta George C. Marshall [18] [19] i bio je njegov predsjednik do 2001. [20] [21] Institut je osnovan kako bi se zalagao za Stratešku obrambenu inicijativu predsjednika Reagana, [22] ali `u 1990-ima se razgranao i postao jedan od vodećih think tankova koji pokušavaju razotkriti znanost o klimatskim promjenama.` [23] [24] A 1990. izvješće koje je koautorstvo sa suosnivačima Instituta Robertom Jastrowom i Williamom Nierenbergom `centralno informiralo o stajalištu Bushove administracije o klimatskim promjenama uzrokovanim ljudskim djelovanjem`.[25] Institut je također promovirao ekološki skepticizam općenito. Godine 1994. Institut je objavio Seitzov rad pod naslovom Kontroverze o globalnom zagrijavanju i ozonskim rupama: izazov znanstvenom sudu. Seitz je doveo u pitanje mišljenje da su CFC `najveća prijetnja ozonskom omotaču`.[26] U istom radu, komentirajući opasnosti sekundarnog udisanja duhanskog dima, zaključio je da `nema dobrih znanstvenih dokaza da je pasivno udisanje doista opasno u normalnim okolnostima.`[27] Seitz je bio središnja figura među poricateljima globalnog zatopljenja.[6][28] Bio je znanstvenik najvišeg ranga u grupi sumnjivaca koji su, počevši od ranih 1990-ih, odlučno osporavali sugestije da je globalno zatopljenje ozbiljna prijetnja.[29] Seitz je tvrdio da je znanost koja stoji iza globalnog zatopljenja neuvjerljiva i da `sigurno ne opravdava nametanje obveznih ograničenja emisija stakleničkih plinova`.[29] Godine 2001. Seitz i Jastrow postavili su pitanje je li globalno zatopljenje antropogeno.[30] Seitz je 1995. potpisao Deklaraciju iz Leipziga i, u otvorenom pismu pozivajući znanstvenike da potpišu peticiju o globalnom zatopljenju Oregonskog instituta za znanost i medicinu, pozvao je Sjedinjene Države da odbace Protokol iz Kyota.[6] Pismo je bilo popraćeno člankom od 12 stranica o klimatskim promjenama koji je slijedio stil i format gotovo identičan prilogu Proceedings of the National Academy of Sciences (PNAS), znanstvenom časopisu, [31] uključujući čak i datum publikacija (`26. listopada`) i broj sveska (`Vol. 13: 149–164 1999`), ali zapravo nije bila publikacija Nacionalne akademije znanosti (NAS). Kao odgovor, Nacionalna akademija znanosti Sjedinjenih Država poduzela je ono što je New York Times nazvao `izvanrednim korakom pobijanja stajališta jednog [od] svojih bivših predsjednika.` [6] [32] [33] NAS je također jasno dao do znanja da `Peticija ne odražava zaključke stručnih izvješća Akademije.` Seitz je opsežno surađivao s Fredom Singerom tijekom njegove konzultantske karijere za duhanske i naftne korporacije u pitanjima zdravlja i klimatskih promjena.

Prikaži sve...
6,990RSD
forward
forward
Detaljnije

MNOGO JEDNOSTAVNIH IOT PROJEKATA! Internet stvari (IoT) čine nas svakodnevni zivot mnogo udobnijim i pomazu da ustedimo novac i resurse. Međutim, pocetak rada nije jednostavan. IoT kompleti obećavaju brz uspeh, ali vrhunsko znanje je dostupno samo onima koji su realizovali svoje projekte od nule. Jens Nickel je glavni urednik nemačkog časopisa Elektor i pronašao je “svoj” put u IoT. Kao deo niza članaka, razvio je nekoliko demo projekata – od kontrole lampe u kućnoj mreži, do autarhične senzorske ploče koja šalje podatke u servis cloud. Uz slogan “Učimo dok radimo” obrađene su teme, kao što su TCP/IP, MQTT, kontrola pomoću pametnog telefona, WiFi pristup, ugrađeni veb server, povezivanje servisa cloud, pouzdanost u slučaju prekida, objektno-orijentisano programiranje i još mnogo štošta. Demo programi (uglavnom na Arduino C dijalektu koji je pogodan za početnike) su naravno dostupni u izvornom kodu. U ovoj knjizi prve 24 epizode ove IoT serije su kompaktno rezimirane. Uključite se u Elektorovu teoriju i praksu uobičajene kombinacije Internet stvari! Kratak sadržaj Poglavlje 1 • Uvod Poglavlje 2 • Skupovi protokola Poglavlje 3 • MQTT Poglavlje 4 • Prvi test pomoću MQTT-a Poglavlje 5 • Kontrola lampe Poglavlje 6 • Kontrola sa pametnog telefona Poglavlje 7 • Upravljač u vašem džepu Poglavlje 8 • Jednostavni korisnički protokol Poglavlje 9 • Minimalni MQTT klijent Poglavlje 10 • Pretzel ploča Poglavlje 11 • Pretzel ploča radi kao Wi-Fi hardverski ključ Poglavlje 12 • Samostalni MQTT Poglavlje 13 • Mala senzorska ploča Poglavlje 14 • Odgovara sa MQTT serverom Poglavlje 15 • Ploča aktuatora sa čipom ESP8266 Poglavlje 16 • Automatsko ponovno povezivanje Poglavlje 17 • Upotreba ESP32 za aktuator Poglavlje 19 • Jednostavni veb server koji koristi ESP32 Poglavlje 20 • ESP32 kreira sopstvenu Wi-Fi mrežu Poglavlje 21 • ESP32 daje znakove “života” Poglavlje 22 • ESP32 čvor senzora sa veb serverom Poglavlje 23 • Vrednosti senzora poslate na Cloud pomoću ESP32 Pico Kit ploče Poglavlje 24 • ESP32 kontroliše daljinske procese JENS NICKEL je studirao fiziku u Štutgartu. Radio je kao urednik časopisa Home Automation and a Photovoltaic, pre nego što se pridružio Elektoru 2004. godine. Od 2010. godine je glavni urednik nemačkog časopisa Elektor. Pošto je strastveni programer, prvenstveno je odgovaran za softverske projekte, naročito u oblasti kućne automatizacije i Internet stvari.

Prikaži sve...
1,210RSD
forward
forward
Detaljnije

DŽEJMS SUZMAN RAD - OD KAMENOG DOBA DO ROBOTA: istorija ljudskog roda kroz prizmu posla Prevod - Jelena Kosovac Izdavač - Laguna, Beograd Godina - 2022 376 strana 20 cm ISBN - 978-86-521-4468-6 Povez - Broširan Stanje - Kao na slici, tekst bez podvlačenja SADRŽAJ: Uvod: Ekonomski problem U POČETKU 1 Živeti znači raditi 2 Besposlene ruke i vredni kljunovi 3 Alatke i veštine 4 Drugi darovi vatre BRIŽNA PRIRODA 5 „Prvobitno društvo blagostanja` 6 Duhovi u šumi MUKOTRPAN RAD NA POLJU 7 Skok sa litice 8 Gozbe i gladovanja 9 Vreme je novac 10 Prve mašine BIĆA GRADA 11 Blistave svetlosti 12 Bolest neograničene aspiracije 13 Vrhunski talenti 14 Smrt službenika 15 Nova bolest Zaključak Izjave zahvalnosti O autoru `Istorija ljudskog roda kroz prizmu posla „Zadivljujuće istraživanje.“ – Juval Noa Harari Rad nas definiše. Određuje naš status, nalaže nam kako ćemo, gde ćemo i s kim ćemo provoditi najviše vremena, utiče na naš osećaj sopstvene vrednosti. Ali jesmo li programirani da radimo toliko naporno koliko radimo? Da li su naši preci iz kamenog doba takođe živeli da bi radili i radili da bi živeli? I kako bi izgledao svet u kome je uloga rada mnogo manja? Koristeći saznanja iz antropologije, arheologije, evolucione biologije, zoologije, fizike i ekonomije autor nam prikazuje da zaista jesmo evoluirali otkrivajući radost, značenje i smisao u radu, ali da su tokom većeg dela prošlosti naši preci radili mnogo manje od nas i da su o radu razmišljali sasvim drugačije. Obrazlaže da su koreni savremene kulture rada u poljoprivrednoj revoluciji koja se dogodila pre deset hiljada godina, a da se sve zaoštrilo kada smo migrirali u gradove. To je promenilo naše međusobne odnose, način na koji se ophodimo prema sredini u kojoj živimo, čak i naš osećaj za protok vremena. Pošto se nalazimo na novoj tački preobražaja, Suzman nam ukazuje da bi proces automatizacije proizvodnje mogao iz korena da promeni naš odnos prema radu i povede nas ka stabilnijoj i pravednijoj budućnosti i za planetu Zemlju i za nas. „Pronicljiva i originalna istorija koja nas poziva da preispitamo zašto, kako i koliko radimo – i da iznova osmislimo šta znači biti čovek u budućnosti.“ – Suzan Kejn, autorka knjige Tihi ljudi „Briljantno. Fascinantna istorija čovečanstva kao potrošača energije.“ – Kirkus Reviews „Ova knjiga je pravi podvig.“ – Adam Grant, autor knjiga Originalni i Razmisli još jednom` Ako Vas nešto zanima, slobodno pošaljite poruku. James Suzman Work: A History Of How We Spend Our Time

Prikaži sve...
790RSD
forward
forward
Detaljnije

STANJE PREDMETA: Ukupna ocena - solidno očuvana. Korice sa vidljivim znakovima korišćenja. Unutrašnjost jako dobra. OPIS: Fundamentalna knjiga o objektno orijentisanom programiranju na jeziku World Wide Weba – Javi. Obuhvata sve – od osnova sintakse do najnaprednijih mogućnosti Jave (distribuirana obrada, izrada grafičkih okruženja i višenitno programiranje). Čitljiv stil Brusa Ekela i kratki, konkretni primeri razjašnjavanju čak i najzamršenije koncepte. - Samo Java 2! - Namenjeno i početnicima i iskusnim programerima. - Prvo izdanje ove knjige obrađuje Javu 1; možete ga preuzeti sa adrese - Objašnjava programski jezik Java, a ne mehanizme izvršavanja koji zavise od platforme. - Temeljno obrađuje osnove i prikazuje napredne teme. - Preko 300 programa, preko 15000 redova koda. - Izvorni kôd se može preuzeti sa Weba. - Objašnjava principe objektno orijentisanog programiranja i način na koji se oni realizuju u Javi. - Knjiga se redovno ažurira; ažurirane delove teksta možete preuzeti sa Weba. - Više od 15 sati audio zapisa predavanja Brusa Ekela dostupno na Mreži. - Brus Ekel organizuje i seminare. Pogledajte plan seminara na adresi SADRŽAJ: Predgovor Uvod Poglavlje 1: Upoznavanje sa objektima Poglavlje 2: Sve je objekat Poglavlje 3: Kontrolisanje toka programa Poglavlje 4: Inicijalizacija i čišćenje Poglavlje 5: Sakrivanje realizacije Poglavlje 6: Ponovno korišćenje klasa Poglavlje 7: Polimorfizam Poglavlje 8: Interfejsi i unutrašnje klase Poglavlje 9: Čuvanje objekata Poglavlje 10: Obrada grešaka pomoću izuzetaka Poglavlje 11: Javin ulazno-izlazni sistem Poglavlje 12: Prepoznavanje tipa tokom izvršavanja Poglavlje 13: Grafičke aplikacije i apleti Poglavlje 14: Višenitni programi Poglavlje 15: Distribuirana obrada Dodatak A: Prosleđivanje i vraćanje objekata Dodatak B: Javin lokalni interfejs (JNI) Dodatak C: Vodič za programiranje na Javi Dodatak D: Izvori Indeks O AUTORU: Bruce Eckel se profesionalno bavi programiranjem više od 20 godina, a od 1986. godine podučava ljude širom sveta kako da programiraju sa objektima, prvo kao poznati predavač i savetnik za C++, a sada i za Javu. Bio je član Komiteta za standarde jezika C++ s pravom glasa, napisao je pet drugih knjiga o objektno orijentisanom programiranju i preko 150 članaka. Radi i kao kolumnista za razne računarske časopise. Na Konferenciji o razvoju softvera vodio je odseke za jezike C++, Java i Python. Diplomirao je primenjenu fiziku i magistrirao računarstvo. SPECIFIKACIJA: Naslov: Misliti na Javi Izdavač: Mikro knjiga Strana: 800 (cb) Pismo: Format: 16,8 x 23,5 cm Godina izdanja: 2002 ISBN: 86-7555-174-6 Naslov originala: Thinking in Java, Second Edition Izdavač originala: Prentice Hall NAPOMENA: Ostale predmete u mojoj ponudi možete proveriti preko sledećih linkova: - Kupindo: https://www.kupindo.com/Clan/Duduledu/SpisakPredmeta - Limundo: https://www.limundo.com/Clan/Duduledu

Prikaži sve...
500RSD
forward
forward
Detaljnije

PETNIČKE SVESKE broj 76 zbornik radova Istraživačka stanica Petnica, 2017. Udžbenički format, 830 strana. Veoma lepo očuvana. Sa donje strane malo uprljana - zanemarljivo. Astronomija Modelovanje i analiza krive sjaja cefeide sa egzoplanetom (Savić Nikola, Obradović Božidar, Herček Filip) Simulacija nastanka polar-ring galaksija (Ristić Danilo) Numeričko ispitivanje plimskog zagrevanja Encelada (Anastasijević Ilija) DSLR fotometrija promenljive zvezde V2455 Cyg (Jevtić Sava) Uticaj atmosfere i površine planete na njenu nastanjivost (Bulaja Luka) Posmatranje i analiza krive sjaja tranzita egzoplanete (Špegar Jelena) Teorijska analiza nastanka preèage kod spiralnih galaksija usled bliskog prolaza dve galaksije (Dodović Matija) Modelovanje i analiza gravitacionih talasa pri inspiralu crne rupe unutar imitatora supermasivne crne rupe (Jevtović Luka) Fizika Uticaj dipolne interakcije na oblik Fermijeve površi (Ristić Jelena, Ilić Anastasija) Numerički model distribucije kompanija po veličini (Đorđević Emilija, Đajić Anja) Primena Markovljevih procesa na problem širenja informacija u mreama (Jakovljević Andrej) Ispitivanje efikasnosti grafena u zaštiti metala od atoma vodonika metodom molekularne dinamike (Božanić Milica, Nikolić Kristina) Lokalizacija zvuka u metamaterijalima (Kukolj Trivko) Uticaj topologije neuronske mree na sinhronizaciju neurona (Ristivojević Aleksandar) Minimizator dejstva na sferi oblika (Cupać Milan, Raonić Bogdan) Kontrola kriostata (Pavlov Dimitrije, Đukić David) Detekcija kvantne uvezanosti korišćenjem POVM merenja sa primenom u komunikacionim protokolima (Vuković Vuk, Mijović Mia) Ispitivanje dinamike kvazičestica u neravnotežnoj superprovodnosti (Vukosavljević Katarina, Burmazović Ivana) Kvantni haos u faznim prelazima (Radović Vuk) Matematika Probabilistički metod i zero-sum Ramseyevi brojevi (Silađi Eva, Šobot Branislav) O lavirintima i ugradivanju stabala u grid grafove (Jakšić Tijana, Poznanović Isidora) Primenjena fizika i elektronika Lokalizacija na osnovu markera (Mićić Dragan, Tonić Danilo) Izdvajanje vokala iz audio zapisa (Radović Srđan, Stefanović Aleksa) Modeliranje, simulacija i implementacija samobalansirajućeg robota (Parag Filip, Stefanović Milomir) Simulacija rada piezo motora i ispitivanje njegovih performansi u zavisnosti od dimenzija (Bogdanović Anđela, Brestovački Lenka) Analiza parametara upravljačkog sistema Ballbota (Sekulić Diana, Bašić Mladen) Detekcija i klasifikacija saobraćajnih znakova (Aleksić Milica, Seke Ervin) Generisanje obučavajućih slika suparničkim neuronskim mreama (Grbić Mihailo) Računarstvo Traženje duplikata u kodu analizom apstraktnih sintaksnih stabala (Bebić Nikola) Konstrukcija unapređenog sigurnosnog protokola za bežičnu mrežnu komunikaciju (Šikuljak Igor) Predikcija sekvencijalnog kretanja u 2D ravni (Tešić Aleksa) Poređenje predviđanja vodostaja reke na osnovu istorijskih podataka upotrebom neuronske mreže i skrivenog Markovljevog modela (Gavrić Milenko) Biologija Uticaj kateholamina na rast, formiranje biofilma i pokretljivost bakterijskih sojeva gastrointestinalnog trakta (Pavlović Dunja) Efekat 1,8-cineola na faktore virulencije bakterijskog soja P. aeruginosa 15442 (Nedeljković Marija) Diverzitet kolembola Nacionalnog parka Fruška gora (Sántha Kinga) Ispitivanje protektivnog dejstva ekstrakta koprive na modelu humanih hepatocita tretiranih benzo[a]pirenom i benz[a]antracenom (Šolaja Sofija, Torbica Teodora, Mitrović Lazar) Potencijal vrste Alyssum murale Waldst & Kit s. l. za hiperakumulaciju nikla na ultramafitima Maljena (Joković Nikola) Selekcija bakterije Escherichia coli za rezistenciju na ultrazvučnu sonifikaciju (Stojković Pavle) Uticaj temperature na uspostavljanje napona kod mikrobioloških gorivnih ćelija sa biokatodom (Simić Milena) Ispitivanje uticaja dibutil ftalata (DBP) na endotelne ćelije krvnih sudova na modelu humane ćelijske linije EA.hy926 (Gordić Vuk) Biomedicina Sinergističko dejstvo ekstrakta belog luka (Allium sativum) i amfotericina B na gljivu Candida Albicans (Kocić Ana) Optimizacija tretmana kurkuminom inkapsuliranim u kompleks želatina i arapske gume u odbrani melanoma B16 od UV-A zračenja (Sušić Vladana) Biološka kontrola biljnog parazita Fusarium graminearum pomoću sinergističkog odnosa Bacillus subtilis i ekstrakta Pellia endiviifolia (Banić Biljana) Ispitivanje uticaja gingerola na vijabilnost ćelijske linije mišijeg melanoma B16 (Milošević Anđela) Testing the Hepatotoxicity of Single Walled and Multi Walled Carbon Nanotubes (Gjoshevska Kristina) Geologija Mogućnost sanacije zagađenja rečne vode glinama (Vizi Aleksa, Karanović Snežana) Hidrohemijske osobine površinskih i podzemnih voda na području planine Avale (Vulović Maša) Razlike u petrografskim karakteristikama kvarclatita planine Rudnik (Ninić Anastasia) Hemijske karakteristike vode Kuršumlijske banje (Lazić Dušica) Uticaj padavina na promenu kvaliteta prirodnih voda u gornjem delu sliva reke Dragobiljice (Dmitrović Jovan) Geneza minerala arsena i gvožđa u slivu reke Ribnice (Kostić Branko, Belotić Branislav) Koncentracije olova i antimona u podzemnim i površinskim vodama reke Štire na području Zajače (Rašević Marijana) Ispitivanje efikasnosti i optimizacija procesa hemijske koagulacije za preradu komunalnih otpadnih voda (Antić Sara) Geološki razvoj centralnog dela planine Kosmaj (Ćirić Nikolina) Procena intenziteta erozije na teritoriji opštine Beočin (Tadić Elena) Hemija Sinteza i solvatohromizam diazo boja derivatizovanih iz pirazolo[1,5-a]pirimidina (Nikoletić Anamarija) Biosorpcija boje Acid orange 7 biomasom hrasta kitnjaka (Quercus Petraea L.) (Topalović Igor) Spektrofotometrijska metoda za određivanje kobalta na bazi njegove reakcije sa 4-(2-pirimidilazo)-rezorcinolom (Čižik Hana) Deponovanje nanočestica srebra na grafen i ispitivanje katalitičkog dejstva dobijenog kompozita na redukciju nitroaromata (Milosavljević Momčilo) Biosorpcija jona olova (Pb2+) iz vodenih rastvora upotrebom ljuski kikirikija kao biosorbenta (Ivković Jelena) Ispitivanje katalitičkog dejstva jona bakra(II) adsorbovanih na površini klinoptilolita na reakciju kuplovanja aril-bromida i alifatičnih diola (Mijatović Aleksa) Kinetička metoda za određivanje nanokoličina kobalta i milikoličina oksalata zasnovana na katalizi i inhibiciji reakcije oksidacije rezorcinola vodonik-peroksidom (Tomić Miona) Antropologija Šta nas odvaja od drugih: Definisanje etničkog identiteta i etničke distance na primeru Slovaka iz Stare Pazove (Kostić Katarina) Antropološka analiza tech veštičarenja na sajtu Tumblr (Čapko Isidora) Semiotička analiza epizode serije The 100 (Šamaraj Ana) Arheologija Predstave muzičkih instrumenata na freskama iz zadužbina kralja Milutina (Pantić Nevena) Dentalna analiza skeleta sa nekropole u okviru objekta 1 na lokalitetu Anine u Ćelijama (Babinjec Dušana, Maksimović Tamara) Interpretacija nekropole iz XVII–XVIII veka sa lokaliteta Anine (Andrić Nenad) Tipološko-hemijska analiza rimskih staklenih narukvica sa lokaliteta Anine u Ćelijama (Đerković Predrag) Analiza ivotinjskih kostiju iz vile sa stambenim i ekonomskim delom sa lokaliteta Anine u Ćelijama (Bogojević Maša, Brančić Anastasija) Društveno-humanističke nauke Uticaj upoznatosti sa materijalom i dužine izlaganja na estetsku procenu renesansnih i slika iz apstraktnog ekpresionizma (Majerle Mia) Istorija Crveni krst u Novom Pazaru od 1976. do 1987. godine: delatnost organizacije u socijalizmu i uticaj ideologije na rad (Antonijević Pavle) Humanitarni rad kraljice Marije Karađorđević u periodu od 1921. do 1941. godine (Bogićević Aleksandar) Udruženje nosilaca Albanske spomenice u Leskovcu 1967–1982. (Milovanović Aleksandar) Beogradski odbor Jadranske straže 1922–1941: Između elitizma i nacionalizma (Milenković Ivan) Konfiskacija i nacionalizacija imovine pod uticajem kolonizacije i potreba KPJ u Opštini Odžaci 1945–1948. (Beronja Branko) Opštinska konferencija SSRN Stara Pazova 1966–1980. (Mirosavljević Igor) Rad Saveza udruženja estradnih umetnika i izvođača Vojvodine na suzbijanju neprofesionalnosti i šunda (1973–1990) (Pajtić Alisa) Lingvistika Da li dijalekatske osobine opstaju i danas: procena i samoprocena kod govornika kosovsko-resavskog dijalekta (Milošević Mina) Uticaj objektivne produktivnosti derivacionih sufiksa na brzinu obrade imenica srpskog jezika (Terzić Milana) Psihologija Depresija u adolescenciji: Koliko znamo i kakvi su nam stavovi? (Lazić Una) Uticaj broja i glasnoće prikazivanih zvukova i veličine kontrasta između mete i pozadine na pojavu iluzije vizuelnog treperenja (Miličić Ivana, Bajić Marina) Akademsko laganje: uticaj nagrade i relacija sa akademskim self-konceptom (Devedžić Darja) Razlike u stavovima adolescenata prema rodnim ulogama u odnosu na raspodelu rodnih uloga u porodici i dominatan pol prijatelja (Osmani Dajana) PIKSNAP: Konstrukcija i validacija skale neakademske prokrastinacije (Tomić Konstantin, Mačkić Pavle) Svesno nesavesni: Ispitivanje prediktora stava adolescenata prema rizičnom seksualnom ponašanju (Damjanović Milica, Žunjić Nevena, Karaman Mina) Dizajn Ljuljaške i zastave (Seminar dizajna 2017) k

Prikaži sve...
1,990RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Hans Reichenbach (26. rujna 1891. - 9. travnja 1953.) bio je vodeći filozof znanosti, pedagog i zagovornik logičkog empirizma. Bio je utjecajan u području znanosti, obrazovanja i logičkog empirizma. Osnovao je Gesellschaft für empirische Philosophie (Društvo za empirijsku filozofiju) u Berlinu 1928. godine, poznato i kao `Berlinski krug`. Carl Gustav Hempel, Richard von Mises, David Hilbert i Kurt Grelling postali su članovi Berlinskog kruga. Godine 1930. Reichenbach i Rudolf Carnap postali su urednici časopisa Erkenntnis. Također je dao trajan doprinos proučavanju empirizma temeljenog na teoriji vjerojatnosti; logika i filozofija matematike; prostor, vrijeme i teorija relativnosti; analiza vjerojatnosnog zaključivanja; i kvantna mehanika.[4] Godine 1951. napisao je Uspon znanstvene filozofije, svoju najpopularniju knjigu.[5][6] Rani život Hans je bio drugi sin židovskog trgovca, Brune Reichenbacha, koji se obratio na protestantizam. Oženio je Selmu Menzel, školsku učiteljicu, koja je potjecala iz duge loze protestantskih profesionalaca koji su potekli još od Reformacije.[7] Njegov stariji brat Bernard igrao je značajnu ulogu u lijevom komunističkom pokretu. Njegov mlađi brat Herman bio je glazbeni pedagog. Nakon završene srednje škole u Hamburgu, Hans Reichenbach je studirao građevinarstvo na Hochschule für Technik Stuttgart, te fiziku, matematiku i filozofiju na raznim sveučilištima, uključujući Berlin, Erlangen, Göttingen i München. Među njegovim učiteljima bili su Ernst Cassirer, David Hilbert, Max Planck, Max Born i Arnold Sommerfeld. Politički aktivizam Reichenbach je bio aktivan u omladinskim pokretima i studentskim organizacijama. Pridružio se Freistudentenschaftu 1910. godine.[8] Sudjelovao je na osnivačkoj konferenciji krovne grupe Freideutsche Jugend na Hoher Meissneru 1913. Objavljivao je članke o reformi sveučilišta, slobodi istraživanja i protiv antisemitskih infiltracija u studentske organizacije. Njegov stariji brat Bernard dijelio je ovaj aktivizam i postao član Komunističke radničke partije Njemačke, predstavljajući ovu organizaciju u Izvršnom komitetu Komunističke internacionale. Hans je napisao Platformu Socijalističke studentske stranke, Berlin koja je objavljena 1918. [9] Stranka je ostala tajna sve do studene revolucije kada je službeno osnovana s njim kao predsjednikom. U to je vrijeme također radio s Karlom Wittfogelom, Alexanderom Schwabom i njegovim drugim bratom Hermanom. Godine 1919. njegov tekst Student und Sozialismus: mit einem Anhang: Programm der Sozialistischen Studentenpartei objavio je Hermann Schüller, aktivist Lige za proletersku kulturu. Međutim, nakon pohađanja predavanja Alberta Einsteina 1919., prestao je sudjelovati u političkim grupama.[11] Akademska karijera Reichenbach je diplomirao filozofiju na Sveučilištu u Erlangenu 1915. i svoju doktorsku disertaciju o teoriji vjerojatnosti pod naslovom Der Begriff der Wahrscheinlichkeit für die mathematische Darstellung der Wirklichkeit (Koncept vjerojatnosti za matematičko predstavljanje stvarnosti) pod mentorstvom Paula Hensel i Max Noether, objavljena je 1916. Reichenbach je tijekom Prvog svjetskog rata služio na ruskoj fronti, u radio postrojbama njemačke vojske. Godine 1917. zbog bolesti je uklonjen iz aktivne službe i vratio se u Berlin. Dok je radio kao fizičar i inženjer, Reichenbach je od 1917. do 1920. pohađao predavanja Alberta Einsteina o teoriji relativnosti u Berlinu. Godine 1920. Reichenbach je počeo predavati na Technische Hochschule Stuttgart kao Privatdozent. Iste godine objavio je svoju prvu knjigu (koja je prihvaćena kao njegova habilitacija iz fizike na Technische Hochschule Stuttgart) o filozofskim implikacijama teorije relativnosti, Teorija relativnosti i apriornog znanja (Relativitätstheorie und Erkenntnis Apriori), koja je kritizirala kantovski pojam sintetičkog apriora. Nakon toga je objavio Aksiomatizaciju teorije relativnosti (1924.), Od Kopernika do Einsteina (1927.) i Filozofiju prostora i vremena (1928.), posljednju koja iznosi logički pozitivistički pogled na teoriju relativnosti. Reichenbach razlikuje aksiome povezanosti i koordinacije. Aksiomi veze su oni znanstveni zakoni koji specificiraju specifične odnose između specifičnih fizičkih stvari, poput Maxwellovih jednadžbi. Oni opisuju empirijske zakone. Aksiomi koordinacije su oni zakoni koji opisuju sve stvari i koji su apriorni, poput euklidske geometrije i `opća su pravila prema kojima se odvijaju veze`. Na primjer, aksiomi povezanosti gravitacijskih jednadžbi temelje se na aksiomima koordinacije aritmetike.[12] Godine 1926., uz pomoć Alberta Einsteina, Maxa Plancka i Maxa von Lauea, Reichenbach je postao docent na odjelu za fiziku Sveučilišta u Berlinu. Stekao je zapaženost zbog svojih metoda podučavanja, kakav je bio lako pristupiti, a njegovi su tečajevi bili otvoreni za raspravu i raspravu. To je u to vrijeme bilo vrlo neobično, iako je danas praksa uobičajena. Godine 1928. Reichenbach je osnovao takozvani `Berlinski krug` (njemački: Die Gesellschaft für empirische Philosophie; engleski: Društvo za empirijsku filozofiju). Među njegovim članovima bili su Carl Gustav Hempel, Richard von Mises, David Hilbert i Kurt Grelling. Manifest Bečkog kruga navodi 30 Reichenbachovih publikacija u bibliografiji blisko povezanih autora. Godine 1930. on i Rudolf Carnap počeli su uređivati časopis Erkenntnis. Kada je Adolf Hitler postao njemački kancelar 1933., Reichenbach je odmah otpušten s dužnosti na Sveučilištu u Berlinu prema vladinim takozvanim `rasnim zakonima` zbog svog židovskog podrijetla. Sam Reichenbach nije prakticirao judaizam, a majka mu je bila njemačka protestantica, ali je ipak imao problema. Nakon toga je emigrirao u Tursku, gdje je vodio katedru za filozofiju na Sveučilištu u Istanbulu. Uveo je interdisciplinarne seminare i tečajeve o znanstvenim temama, a 1935. objavio je Teoriju vjerojatnosti. Godine 1938., uz pomoć Charlesa W. Morrisa, Reichenbach se preselio u Sjedinjene Države kako bi preuzeo mjesto profesora na Sveučilištu California u Los Angelesu na Odsjeku za filozofiju. Reichenbach je pomogao uspostaviti UCLA kao vodeći odjel za filozofiju u Sjedinjenim Državama u poslijeratnom razdoblju. Carl Hempel, Hilary Putnam i Wesley Salmon bili su možda njegovi najistaknutiji učenici. Tijekom svog vremena tamo, objavio je nekoliko svojih najznačajnijih knjiga, uključujući Filozofske temelje kvantne mehanike 1944., Elemente simboličke logike 1947. i Uspon znanstvene filozofije (njegova najpopularnija knjiga) 1951. [5][6 ] Reichenbach je neočekivano umro od srčanog udara 9. travnja 1953. U to je vrijeme živio u Los Angelesu i bavio se problemima u filozofiji vremena i prirodi znanstvenih zakona. Kao dio toga predložio je trodijelni model vremena u jeziku, uključujući vrijeme govora, vrijeme događaja i — kritički rečeno — referentno vrijeme, koje su od tada koristili lingvisti za opisivanje vremena.[13] Taj je rad rezultirao dvjema posthumno objavljenim knjigama: Smjer vremena i Nomološki iskazi te Dopuštene operacije.

Prikaži sve...
990RSD
forward
forward
Detaljnije

U dobrom stanju Hrvatski književni jezik i pitanje varijanata Hrptni naslov Hrvatski književni jezik Vrsta građe zbornik Jezik hrvatski Godina 1969 Izdavanje i proizvodnja Zagreb : Kritika, 1969 (Zagreb : `Ognjen Prica`) Fizički opis 246 str. ; 25 cm Posebno izdanje časopisa Kritika ; sv. 1 Registar. Predmetne odrednice Hrvatski jezik, književni -- Zbornici -- Separati Hrvatski jezik -- Varijante -- Zbornici -- Separati SADRŽAJ Odluka o objavljivanju odluka i proglasa Antifašističkog vijeća narodnog oslobođenja Jugoslavije, njegovog pretsjedništva i nacionalnog komiteta na srpskom, hrvatskom, slovenačkom i makedonskom jeziku .... 2 Odluka o »Službenom listu Demokratske Federativne Jugoslavije« .... 3 Riječ uredništva .... 4 KRITIKA RJEČNIKA HRVATSKOSRPSKOGA KNJIŽEVNOG JEZIKA (KNJIGA PRVA A—F I KNJIGA DRUGA G—K), IZDANJE MATICE HRVATSKE I MATICE SRPSKE, ZAGREB—NOVI SAD, 1967. Bratoljub Klaić: O novom Rječniku »obiju Matica« .... 7 Stjepan Babić: O Rječniku Matice hrvatske .... 25 Radoslav Katičić: Djelo koje treba temeljito popraviti 41 Tomislav Ladan: Centaurski rječnik centaurskog jezika .... 48 Igor Zidić: Leksički magazin i likovna kultura 59 Karlo Kosor: Rječnik hrvatskosrpskoga književnog jezika .... 78 Marijan Kancelarić: Oštro o starome — radi boljeg novoga Rječnika .... 93 Aleksandar Šolc Obradba stručnih naziva u Rječniku hrvatskosrpskog i Juraj Božičević: književnog jezika (metrologija, fizika, kemija i dr.) .... 104 ODGOVOR BRANITELJIMA RJEČNIKA Stjepan Babić: O rječnicima, kritikama i protukritikama .... 121 Radoslav Katičić: Riječ-dvije kritičarima moje kritike u »Kritici« .... 139 Tomislav Ladan: Jezik književnosti, književni jezik i rječnik književnoga jezika .... 147 *** O načinu daljeg rada na Rječniku i Rečniku .... 172 *** Zaključci primljeni na Zagrebačkom sastanku Matice hrvatske, Matice srpske i uredništva Rječnika (Reč- nika) 4. i 5. siječnja 1969 .... 175 RASPRE I RASPRAVE O JEZIKU Ljudevit Jonke: Razumijevanje i snošljivost i u jezičnim pitanjima .... 179 Ljudevit Jonke: Postanak novijega književnog jezika u Hrvata i Srba .... 184 *** Zaključci plenuma Društva književnika Hrvatske o problemima suvremenog jezika hrvatske književnosti, znanosti, školstva i sredstava masovne komunikacije .... 193 *** Rezolucija zagrebačkog lingvističkog kruga .... 195 *** Izjava o jedinstvu i varijantama hrvatskosrpskoga književnog jezika .... 197 Stjepan Babić: Htijenja i ostvarenja Novosadskoga dogovora .... 199 Stjepan Babić: Za ravnopravnost u teoriji i praksi ..... 209 Milan Moguš: Varijante prelaze okvire puke komunikativnosti .... 213 Krunoslav Pranjić: Zakonski prijedlog: četiri jezika .... 216 Zdravko Malić: Komunikacija bez šumova .... 219 Ljudevit Jonke: Razvoj hrvatskoga književnog jezika u 20. stoljeću .... 222 Ljudevit Jonke: Aktualna jezična pitanja danas .... 232 Ljudevit Jonke: Osnovni pojmovi o jeziku Hrvata i Srba .... 236 Kazalo .... 243 RIJEČ UREDNIŠTVA O jeziku i u vezi s njim vode se posljednjih godina diskusije i polemike na različitim stranama i s veoma različitih polazišta. Dok jedan dio stručnjaka želi isključivo znanstveno postavljati i rješavati pitanja varijanata te standardnog, odnosno književnog jezika, ima i takvih lingvista koji žele svaku diskusiju s oponentima što prije, u stvari naprečac prekinuti, kratkim postupkom, uz pomoć političkog pritiska. Budući da je to veoma osjetljivo i važno pitanje i da ga stoga valja na odgovarajući način što detaljnije raščlaniti i raspraviti u atmosferi obostrano izražene dobre volje i tolerancije, urednici »Kritike« omogućili su objavljivanje kritičkih tekstova o najnovijem Rječniku hrvatskosrpskog književnog jezika (izdanje Matice hrvatske i Matice srpske). Nakon toga su uslijedile prilično oštre rasprave koje su naišle na izuzetno zanimanje javnosti, o čemu svjedoče i brzo rasprodani primjerci svih časopisa i novina u kojima je o tome, ili u povodu toga, opširnije polemički pisano. Smatrajući opravdanom želju mnogih čitalaca da se na jednom mjestu saberu svi važniji noviji radovi istaknutih hrvatskih filologa o pitanjima jezika, uredništvo »Kritike« je odlučilo da tome posveti posebni broj. Izbor je obavljen u suradnji s našim najautoritativnijim stručnjacima za pitanja jezika, pa smo stoga uvjereni da obuhvaća uistinu sve magistralne priloge. Razumije se, urednici su poštovali osobna mišljenja pojedinaca i nisu ni u jednom slučaju željeli birati samo one radove i redove s kojima se u potpunosti slažu. Diskusija je u toku; svako nasilno insistiranje na ujednačavanju mišljenja već u ovoj fazi izazvalo bi nepopravljivo teške posljedice. Zato ovaj zbornik članaka ne treba čitati kao cjelovito djelo istomišljenika niti kao programatsku platformu svih daljnjih rasprava, nego kao panoramu i komperidij pogleda i shvaćanja što ih danas zastupaju određeni hrvatski lingvisti. (Zbog objektivnih tehničkih razloga radovi Dalibora Brozovića bit će objavljeni odvojeno, u posebnom izdanju »Kritike«, pod naslovom Rječnik jezika, ili jezik rječnika?) Valja svakako istaći da je prvi takav izdavački pokušaj uredništva »Kritike« omogućen prvenstveno solidarnošću autora i urednika koji su se svi odrekli honorara, kao i određenoj materijalnoj pomoći Matice hrvatske, na čemu svima i ovom prigodom zahvaljujemo.

Prikaži sve...
599RSD
forward
forward
Detaljnije

Lepo očuvano Solid State Physics by G. I. Epifanov ( Mir Publishers Moscow, 1979, Hardcover ) Author: G. I. Epifanov, D.Sc. Publisher: Mir Publishers, Moscow. Title: Solid State Physics. Printed in: Moscow, Russian Federation. Edition 1st English Edition 1979 info: This is a book which covers the topic of solid state physics comprehensively. Starting from the structure of matter and various types of bonds in the first chapter the mechanical properties are treated in the second chapter. The second chapter also includes a discussion of Hooke`s Law, plastic flow, dislocations, elasticity etc. The third chapter deals with statistical mechanics and discusses degenerate and non-degenerate ensembles and various distribution functions. The fourth chapter looks at thermal properties of solids with reference to crystal lattice, heat capacity, heat conductivity etc. The fifth chapter discusses band theory of solids with reference to energy spectrum, effective mass and semiconductors. Some of the graphs in this chapter are revealing of the physical processes in the working of band structure. Sixth and seventh chapter deal with electrical and magnetic properties of solids. Sixth chapter also discusses deviations from Ohm`s Law (Section 58). Seventh chapter includes discssion on various types of magnetism their origins, and magnetic properties of solids and atoms along with magnetic resonance. Eighth chapter discusses contact phenomenon, work functions between different of materials including p-n junctions. The last chapter discusses thermoelectric and galvanomagnetic phenomena including Seeback effect, Peltier effect, Thomson effect and some of their practical applications. As in the first edition, the presentation of material has followed the aim of elucidating the physical nature of the phenomena dis­cussed. But, where possible, the qualitative relations are also pre­sented, often though without rigorous mathematics. The book was translated from the Russian by Mark Samokhvalov and was published by Mir in 1979. Contents Preface 5 1 Bonding. The Internal Structure of Solids § 1 The van der Waals forces 11 § 2 The ionic bond 15 § 3 The covalent bond 16 § 4 The metallic bond 21 § 5 The hydrogen bond 22 § 6 Comparison between bonds of various kinds 23 § 7 Forces of repulsion 24 § 8 Crystal lattice 25 § 9 Notation used to describe sites, directions, and planes in a crystal 29 §10 Classification of solids based on the nature of bonds 32 §11 Polymorphism 38 §12 Imperfections and defects of the crystal lattice 42 2 Mechanical Properties of Solids § 13 Elastic and plastic deformations. Hooke’s law 46 § 14 Principal laws governing plastic flow in crystals 51 § 15 Mechanical twinning 55 § 16 Theoretical and real shear strengths of crystals 56 § 17 The dislocation concept. Principal types of dislocations 58 § 18 Forces needed to move dislocations 64 § 19 Sources of dislocations. Strengthening of crystals 66 § 20 Brittle strength of solids 71 § 21 Time dependence of the strength of solids 77 § 22 Methods of increasing the strength of solids 81 3 Elements of Physical Statistics § 23 Methods used to describe the state of a macroscopic system 84 § 24 Degenerate and nondegenerate ensembles 88 § 25 The number of states for microscopic particles 91 § 26 Distribution function for a nondegenerate gas 94 § 27 Distribution function for a degenerate fermion gas 96 § 28 Distribution function for a degenerate boson gas 103 § 29 Rules for statistical averaging 105 4 Thermal Properties of Solids § 30 Normal modes of a lattice 107 § 31 Normal modes spectrum of a lattice 110 § 32 Phonons 112 § 33 Heat capacity of solids 115 § 34 Heat capacity of electron gas 120 § 35 Thermal expansion of solids 122 § 36 Heat conductivity of solids 126 5 The Band Theory of Solids § 37 Electron energy levels of a free atom 133 § 38 Collectivization of electrons in a crystal 136 § 39 Energy spectrum of electrons in a crystal 138 § 40 Dependence of electron energy on the wave vector 142 § 41 Effective mass of the electron 147 § 42 Occupation of bands by electrons. Conductors,dielectrics, and semiconductors 151 § 43 Intrinsic semiconductors. The concept of a hole 153 § 44 Impurity semiconductors 156 § 45 Position of the Fermi level and free carrier concentration in semiconductors 159 § 46 Nonequilibrium carriers 166 6 Electrical Conductivity of Solids § 47 Equilibrium state of electron gas in a conductor in the absence of an electric field 169 § 48 Electron drift in an electric field 170 § 49 Relaxation time and mean free path 171 § 50 Specific conductance of a conductor 173 § 51 Electrical conductivity of nondegenerate and degenerate gases 174 § 52 Wiedemann-Franz-Lorenz law 176 § 53 Temperature dependence of carrier mobility 177 § 54 Electrical conductivity of pure metals 183 § 55 Electrical conductivity of metal alloys 184 § 56 Intrinsic conductivity of semiconductors 188 § 57 Impurity (extrinsic) conductivity of semiconductors 190 § 58 Deviation from Ohm’s law. The effect ofa strong field 193 § 59 The Gunn effect 195 § 60 Photoconductivity of semiconductors 196 § 61 Luminescence 203 § 62 Fundamentals of superconductivity 207 7 Magnetic Properties of Solids § 63 Magnetic field in magnetic materials 224 § 64 Magnetic properties of solids 225 § 65 Magnetic properties of atoms 232 § 66 Origin of diamagnetism 238 § 67 Origin of paramagnetism 240 § 68 Origin of ferromagnetism 247 § 69 Antiferromagnetism 254 § 70 Ferrimagnetism. Ferrites 255 § 71 Magnetic resonance 257 § 72 Fundamentals of quantum electronics 259 8 Contact Phenomena § 73 Work function 265 § 74 Contact of two metals 268 § 75 The metal-semiconductor contact 271 § 76 Contact between two semiconductors of different types of conductivity 278 § 77 Physical principles of semiconductor p~n junction devices 288 § 78 Fundamentals of integrated circuit electronics (microelectron­ ics) 299 9 Thermoeleletric and Galvanomagnetic Phenomena § 79 The Seebeck effect 302. § 80 The Peltier effect 307 § 81 The Thomson effect 310 § 82 Galvanomagnetic phenomena 310 § 83 Practical applications of thermoelectric and galvanomag­netic phenomena 315 Appendices I Derivation of the Maxwell-Boltzmann distribution function 317 II Derivation of the Fermi-Dirac distribution function 318 III Derivation of the Bose-Einstein distribution function 320 IV Tables 321 Glossary of Symbols and Notations 322 Bibliography 326 Index 329 Fizika strucna literatura iz fizike naucne knjige prirodne nauke

Prikaži sve...
7,990RSD
forward
forward
Detaljnije

Dejvid Hjum Na engleskom Nekorišćena knjiga THE ESSENTIAL PHLOSOPICAL WORKS Retko u ponudi Dejvid Hjum (engl. David Hume; Edinburg, 7. maj 1711 — Edinburg, 25. avgust 1776) bio je škotski filozof, ekonomista i istoričar. Bio je skeptičar koji je počeo je da studira prava, koja nije do kraja završio. U toku studija dolazi u dodir sa Njutnovom fizikom, kao i sa delima engleskog filozofa Džona Loka koji mu daje pravac u filozofiji.[2] Hjumov uticaj[uredi | uredi izvor] Dejvid Hjum je bio jedna od značajnijih ličnosti njegovog stoleća. Na evropskom kontinentu, a naročito u Francuskoj, važio je za jednog od većih engleskih filozofa. U Nemačkoj je Kant tvrdio da ga je Hjumova lektira iz dogme i dremeža probudila.[3] Hjumove moralno filozofske ideje utiču takođe na utilitariste 19. veka, naročito na Džeremi Bentama i Džona Stjuarta Mila. Biografija[uredi | uredi izvor] Kada bi čovek pustio današnje profesore filozofije da odluče ko je bio najbolji prozni autor na engleskom jeziku, pobedio bi sigurno Hjum. Hjum je rano doneo odluku o filozofiranju, podstaknut marljivim čitanjem lektire, pisao je taj šesnaestogodišnjak, hteo je: „Kao jedan filozof da govori“. Godinu dana kasnije, da bi ispunio želju svojim roditeljima upisuje se da studira prava, za koje nije pokazao veliko interesovanje.Počinje ozbiljno da se upušta u filozofske probleme, njegov veliki prijatelj u mislima postao je Ciceron. Godine 1729. dobio je nervni slom i žali se na jake depresije koje češće dobija. Ta depresivna bolest trajala je četiri godine, pokušao je da se izleči čvrstom disciplinom, tako što bi se dnevno po par sati posvetio filozofskim posmatranjima. Ali baš tako lako, kao što je on zamislio, nije išlo. Da bi se što pre izlečio pokušao je sa normalnim poslom. Počeo je da radi kao trgovac u jednoj prodavnici šećera u Bristolu. Brzo je shvatio da taj zanat nije za njega i pokušava ponovo sa čistom filozofskom egzistencijom. Hjum putuje za Francusku i tamo boravi tri godine, gde je životni standart mnogo skuplji nego u Engleskoj, tu počinje svoje prvo delo a završava ga u Londonu „Traktat“ Rasprava o ljudskoj prirodi (1739—1740), koje važi za majstorsko delo koje je Hjum objavio. Više sreće imao je Hjum sa esejima o Moralu i Politici. U krug užih prijatelja pripada Adam Smit, koji se smatrao ocem ekonomije i poznati osnivač savremene geologije Džejms Haton.[4] Hjum skeptičar[uredi | uredi izvor] Njegova skeptičnost se odražavala pre svega protiv metafizike, njoj i sa tim svakoj spekulaciji o nedostupnim stvarima bile su njegova glavna borba. Metafizičke ideje bile su za njega produkt neplodnog naprezanja čovečije taštine, koja pokušava u predmete da uđe koje su razumu potpuno nepristupačni. Ta izmišljena filozofija (Pseudofilozofija) mora se nemilosrdno otkriti (tako misli Hjum). Takođe njegova molba za profesorsko mesto na univerzitetu u Edinburgu bila je odbijena, verovatno zato što je Hjum okarakterisan kao religiozni skeptičar. Delo koje je objavio 1748, Jedno istraživanje u pogledu ljudskog razuma, moguće ja da obuhvata njegov Traktat (Rasprava). Etika[uredi | uredi izvor] U etici Hjum zastupa mišljenje da „dobro i loše nisu zavisni od razuma, nego samo od njihovog značaja i u sreću izrasli“. Dela[uredi | uredi izvor] 1748. Istraživanje ljudskog razuma 1751. Istraživanje moralnih principa 1779. Dijalog o prirodnoj religiji

Prikaži sve...
3,990RSD
forward
forward
Detaljnije

Odlično stanje Majkl Faradej, FRS (engl. Michael Faraday; Njuington Bats, 22. septembar 1791 — London, 25. avgust 1867) bio je engleski eksperimentalni i optički fizičar i hemičar, član Kraljevskog društva. Značajan po mnogim naučnim otkrićima, prvenstveno u oblasti elektriciteta i magnetizma. Od 1903. godine eponim je Faradejevog društva (od 1980. spojeno u Kraljevsko hemijsko društvo). Majkl Faradej M Faraday Th Phillips oil 1842.jpg Majkl Faradej (1842, T. Filips) Rođenje 22. septembar 1791. Njuington Bats, Velika Britanija Smrt 25. avgust 1867. (75 god.) London, Ujedinjeno Kraljevstvo Polje eksperimentalna fizika, optička fizika; hemija Institucija Kraljevska institucija Poznat po 13 stavki Faradejev zakon EMI Elektrohemija Faradejev efekat Faradejev kavez Faradejeva konstanta Faradejev cilindar Faradejev zakon elektrolize Faradejev paradoks Faradejev rotator Faradejev učinak Faradejev talas Faradejev točak Faradejeve linije sile[1] Nagrade 4 značajne Kraljevska medalja (1835, 1846) Nagrada Kopli (1832, 1838) Ramfordova medalja (1846) Albertova medalja (1866) Potpis Michael Faraday signature.svg Život Majkla Faradeja vrlo je zanimljiv i bogat doživljajima. Kao mlad knjigovezački radnik zainteresovao se za fiziku i odlučio da se bavi izučavanjem prirodnih pojava. Najpre je radio u laboratoriji tada čuvenog engleskog hemičara Hamfrija Dejvija. Daroviti mladić bio je vrlo radoznao i dalje se sam usavršavao, neprekidno vršeći najraznovrsnije fizičke i hemijske oglede. Otkrio je dva osnovna zakona elektrolize, tada je radio u Kiculovoj laboratoriji. Ovi zakoni su postali osnov elektrohemije i učenja o elektricitetu, a poznati su kao Faradejevi zakoni elektrolize.[2] Ovaj marljivi naučnik prvi je otkrio i vezu između magnetskog polja i svetlosti.[3][4] Njegovo najznačajnije otkriće je poznati Faradejev zakon elektromagnetne indukcije koji je kasnije uvršćen i među Maksvelove osnovne jednačine elektrodinamike. Po Faradeju je dobila ime jedinica za merenje električnog kapaciteta — farad (F), kao i rotacija ravni polarizacije svetlosti u magnetskom polju — Faradejev efekat. Detinjstvo i početak karijere Uredi Majkl Faradej je rođen u malom mestu Njuington Bats (Newington Butts), danas južni London. Živeo je u siromašnoj porodici, pa se obrazovao sam. [5] S četrnaest godina postao je šegrt kod londonskog knjigovesca i prodavca knjiga Džordža Riboa (George Riebau). Za sedam godina rada pročitao je mnogo knjiga i razvio interes za nauku, a posebno za elektricitet.[6][7] Faradejeva laboratorija u Kraljevskoj instituciji (gravira, 1870) Sa 19 godina Faradej je studirao kod priznatih hemičara ser Hamfrija Dejvija, predsednika Kraljevskog društva i Džona Tejtuma, osnivača Građanskog filozofskog društva. Nakon što je Faradej poslao Dejviju knjigu od 300 strana sa beleškama sa predavanja, ovaj mu je odgovorio da će ga imati na umu, ali da se još uvek drži svog zanata knjigovesca. Nakon što je Dejvi oštetio vid pri eksperimentu sa azot-trihloridom, postavio je Faradeja za sekretara.[8] Kad je Džon Pejn iz Kraljevskog društva dobio otkaz, Dejvi je predložio Faradeja kao laboratorijskog asistenta. Naučna karijera Uredi Jedan od Faradejevih ekspe­rime­nata iz 1831. u kojem se demonstrira indukcija; tečna baterija (desno) šalje električnu struju kroz mali kalem (A) koji kada se pomera ka gore ili dole unutar velikog kalema (B) njegovo magnetno polje indukuje tre­nutni napon u kalemu, koji se može detektovati galvanometrom (G) Najveći i najpoznatiji Faradejevi radovi bili su vezani za elektricitet. Otkriće danskog hemičara Hansa Kristijana Ersteda da magnetna igla skreće ako se nađe blizu provodnika kroz koji protiče električna struja, potaknulo je Dejvija i Volastona da 1821. pomoću Erstedovog elektromagnetizma pokušaju konstruisati elektromotor, ali u tome nisu uspeli. Faradej je, nakon diskusije sa njima, počeo raditi na uređaju koji bi radio na principu elektromagnetske rotacije: ako se na polovinu magneta (sličnog potkovici) postavi pljosnata metalna čaša napunjena živom, a u čašu uvuče sa oba kraja bakarna žica, čija se sredina oko jednog šiljka oslanja na pol magneta i kada se kroz živu pusti električna struja iz električne baterije, ona će, prolazeći kroz žicu, prisiliti žicu da se okreće oko magneta. Ako se taj pribor postavi na drugi pol magneta, žica će početi da se okreće na suprotnu stranu. Taj izum poznat je kao homopolarni motor. Ovi su eksperimenti i izumi postavili osnove moderne elektromagnetske tehnologije. No onda je učinio grešku. Svoj eksperiment je objavio pre pokazivanja Volastonu i Dejviju, što je dovelo do kontroverze i bilo je uzrok njegovog povlačenja s područja elektromagnetizma na nekoliko godina. Majk Faradej (cca 1861) Portret Faradeja u njegovim kasnim tridesetim Nakon deset godina, 1831. započeo je seriju eksperimenata u kojima je otkrio elektromagnetnu indukciju. Moguće je da je Džozef Henri otkrio samoindukciju nekoliko meseci pre Faradeja, ali su oba otkrića zasenjena otkrićem Italijana Frančeska Zantedekija. On je otkrio da ako provuče magnet kroz krug od žice da će se magnet zadržati sredini kruga. Njegovi esperimenti su pokazali su da promenljivo magnetsko polje indukuje (uzrokuje) električnu struju. Ova je teorija matematički nazvana Faradejev zakon, a kasnije je postala jedna od četiri Maksvelove jednačine. Faradej je to iskoristirao da konstruiše električni dinamo, preteču modernog generatora. Faradej je tvrdio da se elektromagnetni talasi šire u praznom prostoru oko provodnika, ali taj eksperiment nikad nije dovršio. Njegove kolege naučnici su odbacile takvu ideju, a Faradej nije doživeo da vidi prihvatanje svoje ideje. Faradejev koncept linija fluksa koje izlaze iz naelektrisanih tela i magneta omogućio je način da se zamisli izgled električnih i magnetnih polja. Taj model bio je prekretnica za uspešne konstrukcije elektromehaničkih mašina koje su dominirale u inženjerstvu od 19. veka. Jednostavni dijagram Faradejevog aparatusa za indukovanje električne struje magnetnim poljem: baterija (levo), prsten i namotani kalem od gvožđa (u sredini) i galvanometar (desno) Faradej se bavio i hemijom, a tu je otkrio nove supstance, oksidacione brojeve i način kako gasove pretvoriti u tečnost. Takođe je otkrio zakone elektrolize i uveo pojmove anoda, katoda, elektroda i jon. Godine 1845. otkrio je ono što danas nazivamo Faradejev efekat i fenomen nazvan dijamagnetizam. Smer polarizacije linearno polarizovanog svetla propušten kroz meterijalnu sredinu može biti rotiran pomoću spoljašnjeg magnetskog polja postavljenog u pravom smeru. U svoju beležnicu je zapisao: „ Konačno sam uspeo osvetliti magnetske linije sile i da namagnetišem zrak svetla. ” To je dokazalo povezanost između magnetizma i svetlosti. U radu sa statičkim elektricitetom, Faradej je pokazao da se elektricitet u provodniku pomiče ka spoljašnjosti, odnosno da ne postoji u unutrašnjosti provodnika. To je zato što se u elektricitet raspoređuje po površini na način koji poništava električno polje u unutrašnjosti. Taj se efekt naziva Faradejev kavez. Ostalo Uredi Majkl Faradej (1917, A. Blejkli) Grob Majkla Faradeja na groblju „Hajgejt” u Londonu Imao je seriju uspešnih predavanja iz hemije i fizike na Royal Institution, nazvana The Chemical History of a Candle. To je bio početak božićnih predavanja omladini koja se i danas održavaju. Faradej je poznat po izumima i istraživanjima, ali nije bio obrazovan u matematici. No u saradnji sa Maksvelom njegovi su patenti prevedeni u metematički jezik. Poznat je po tome što je odbio titulu ser i predsedništvo u Kraljevskom društvu (predsedavanje britanskom kraljevskom akademijom). Njegov lik štampan je na novčanici od 20 funti. Njegov sponzor i učitelj bio je Džon Fuler, osnivač Fulerove profesorske katedre na katedri za hemiju kraljevskog instituta. Faradej je bio prvi i najpoznatiji nosilac te titule koju je dobio doživotno. Faradej je bio veoma pobožan i bio je član jedne male sekte unutar škotske crkve. Služio je crkvi kao stariji član i držao mise.[9] Faradej se 1821. oženio Sarom Bernar, ali nisu imali dece.[10] Kako se približavao pedesetoj godini smanjivao je rad i obaveze da bi u jesen 1841. primetio da rapidno gubi pamćenje i od tada njegov rad skoro potpuno prestaje. Preminuo je u svojoj kući u Hempton Kortu, 25. avgusta 1867. godine. Bibliografija Uredi Chemische Manipulation (1828) Faradeje knjige, sa izuzetkom Chemical Manipulation, bile su kolekcije naučnih radova ili transkripcije predavanja.[11] Nakon njegove smrti, objavljen je Faradejev dnevnik, kao zbirka nekoliko velikih svezaka njegovih pisama; te Faradejev žurnal, sa njegovim putovanjima sa Dejvi (1813—1815). Faraday, Michael (1827). Chemical Manipulation, Being Instructions to Students in Chemistry. John Murray. 2nd ed. 1830, 3rd ed. 1842 Faraday, Michael (1839). Experimental Researches in Electricity, vols. i. and ii. Richard and John Edward Taylor.; vol. iii. Richard Taylor and William Francis, 1855 Faraday, Michael (1859). Experimental Researches in Chemistry and Physics. Taylor and Francis. ISBN 978-0-85066-841-4. Faraday, Michael (1861). W. Crookes, ur. A Course of Six Lectures on the Chemical History of a Candle. Griffin, Bohn & Co. ISBN 978-1-4255-1974-2. Faraday, Michael (1873). W. Crookes, ur. On the Various Forces in Nature. Chatto and Windus. Faraday, Michael (1932—1936). T. Martin, ur. Diary. ISBN 978-0-7135-0439-2. – published in eight volumes; see also the 2009 publication of Faraday`s diary Faraday, Michael (1991). B. Bowers and L. Symons, ur. Curiosity Perfectly Satisfyed: Faraday`s Travels in Europe 1813–1815. Institution of Electrical Engineers. Faraday, Michael (1991). F. A. J. L. James, ur. The Correspondence of Michael Faraday. 1. INSPEC, Inc. ISBN 978-0-86341-248-6. – volume 2, 1993; volume 3, 1996; volume 4, 1999 Faraday, Michael (2008). Alice Jenkins, ur. Michael Faraday`s Mental Exercises: An Artisan Essay Circle in Regency London. Liverpool, UK: Liverpool University Press. Course of six lectures on the various forces of matter, and their relations to each other London; Glasgow: R. Griffin, 1860. The Liquefaction of Gases, Edinburgh: W. F. Clay, 1896. The letters of Faraday and Schoenbein 1836–1862. With notes, comments and references to contemporary letters London: Williams & Norgate 1899. (Digital edition by the University and State Library Düsseldorf)

Prikaži sve...
2,790RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Struktura znanosti: problemi u logici znanstvenog objašnjenja knjiga je iz 1961. godine o filozofiji znanosti filozofa Ernesta Nagela, u kojoj autor raspravlja o prirodi znanstvenih istraživanja s osvrtom na prirodnu znanost i društvene znanosti. Nagel istražuje ulogu redukcije u znanstvenim teorijama i odnos cjelina prema njihovim dijelovima, a također ocjenjuje stavove filozofa kao što je Isaiah Berlin. Knjiga je dobila pozitivne kritike, kao i još neke mješovite ocjene. Smatra se klasičnim djelom, a komentatori su ga pohvalili zbog Nagelove rasprave o redukcionizmu i holizmu, kao i zbog njegove kritike Berlina. Međutim, kritičari Strukture znanosti smatrali su Nagelovu raspravu o društvenoj znanosti manje uvjerljivom od njegove rasprave o prirodnoj znanosti. Ernest Nagel (16. studenog 1901. - 20. rujna 1985.) bio je američki filozof znanosti. [1] [2] Zajedno s Rudolfom Carnapom, Hansom Reichenbachom i Carlom Hempelom, ponekad se vidi kao jedna od glavnih figura logičnog pozitivističkog pokreta. Njegova knjiga `Struktura znanosti` iz 1961. godine smatra se temeljnim djelom u logici znanstvenog objašnjenja. Život i karijera Nagel je rođen u Nové Mesta nad Váhom (danas u Slovačkoj, zatim u Vágújhelyu i u dijelu Austro-Ugarske). Njegova majka Frida Weiss bila je iz obližnjeg grada Vrbovéa (ili Verba). Emigrirao je u Sjedinjene Države u dobi od 10 godina s obitelji, a američki državljanin postao je 1919. godine. Diplomirao je na City Collegeu u New Yorku 1923. godine, a doktorirao na Sveučilištu Columbia 1931. godine, [3] s disertacijom o konceptu mjerenja. Osim jedne godine (1966-1967) na Sveučilištu Rockefeller, cijelu je akademsku karijeru proveo na Columbiji. Tamo je postao prvi profesor filozofije John Dewey 1955. [4] A zatim sveučilišni profesor od 1967. do umirovljenja 1970., nakon čega je nastavio predavati. 1977. bio je jedan od rijetkih filozofa izabranih u Nacionalnu akademiju znanosti. Njegov se rad odnosio na filozofiju matematičkih polja kao što su geometrija i vjerojatnost, kvantna mehanika i status reduktivnih i induktivnih teorija znanosti. Njegova knjiga `Struktura znanosti` (1961.) praktički je inaugurirala područje analitičke filozofije znanosti. Objasnio je različite vrste objašnjenja na različitim poljima i bio skeptičan u pogledu pokušaja objedinjavanja prirode znanstvenih zakona ili objašnjenja. Prvi je predložio da se postavljanjem analitičkih ekvivalencija (ili `mostovnih zakona`) između pojmova različitih znanosti može eliminirati sve ontološke obveze, osim onih koje zahtijeva najosnovnija znanost. Također je podržao stajalište da su društvene znanosti znanstvene i trebale bi usvojiti iste standarde kao i prirodne znanosti. Nagel je napisao Uvod u logiku i znanstvene metode s Morrisom Raphaelom Cohenom, svojim učiteljem CCNY-a [3] 1934. Godine 1958. objavio je s dokazom Jamesa R. Newmana Gödela, kratku knjigu koja objašnjava Gödelove teoreme nekompletnosti onima koji nisu dobro obučeni u matematička logika. Uređivao je Journal of Philosophy (1939–1956) i Journal of Symbolic Logic (1940–1946). Kao javni intelektualac, podržao je skeptičan pristup tvrdnjama o paranormalnom, postavši jedan od prvih sponzora i članova Odbora za skeptično istraživanje 1976. godine, zajedno s još 24 značajna filozofa poput W. V. Quinea. Odbor ga je posthumno uvrstio u svoj `Panteon skeptika` kao priznanje Nagelovom doprinosu u svrhu znanstvenog skepticizma. [5] [6] [7] Nagel je bio ateist. [8] Preminuo je u New Yorku. Imao je dva sina, Alexandera Nagela (profesor matematike na Sveučilištu Wisconsin) i Sidneya Nagela (profesor fizike na Sveučilištu u Chicagu). Nagelovi doktorandi su Morton White, Patrick Suppes, Henry Kyburg, Isaac Levi i Kenneth Schaffner. Festschrift, Filozofija, znanost i metoda: Eseji u čast Ernesta Nagela, objavljen je 1969.

Prikaži sve...
1,490RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Barbara En Brenan S jasnoćom fizičara i saosećanjem nadarenog iscelitelja s petnaest godina profesionalnog iskustva i 5.000 klijenata i učenika, Barbara En Brenan predstavlja prvu opširnu studiju o ljudskom energetskom polju ljudima koji tragaju za srećom, zdravljem i svojim punim potencijalom. Naša fizička tela egzistiraju unutar jednog većeg „tela”, ljudskog energetskog polja ili aure, koje je posrednik kroz koji stvaramo svoj doživljaj stvarnosti, uključujući i zdravlje i bolest. I kroz to energetsko polje imamo moć da iscelimo sami sebe. Ovo energetsko telo – čije su postojanje naučnici tek nedavno potvrdili, ali iscelitelji i mistici dugo znaju za njega – početna je tačka svih oboljenja. U njemu se dešavaju naši najmoćniji i najdublji ljudski međusobni uticaji, odatle potiču i tu se isceljuju svi psihološki i emocionalni poremećaji. Ruke koje leče su vaš vodič ka ispunjenosti. Barbara En Brenan (rođena 19. februara 1939 u Americi) je spisateljica, duhovna isceliteljka i edukator na polju spiritualnog lečelja. 2011. godine, Votkinsov časopis („Votkins - um, telo, duh” je kvartalni ezoterični časopis koji pokriva širok spektar tema od savremene duhovnosti do misticizma i istočne filozofije)[1] smestio ju je na 94. mesto liste[2] spiritualno najuticajnijih ljudi na svetu. Obrazovanje i početak karijere Godine 1962., diplomirala je fiziku na Univerzitetu Viskonsina u Medisonu, a dve godine kasnije, na istom univerzitetu stekla je master diplomu iz oblasti atmosferske fizike.[3] Od 1970. godine (na mnogobrojnim neakreditovanim institucijama) pohađala je različite kurseve u sferi ljudskog energetskog polja. U Vašingtonu je izučavala dvogodišnji program terapijskog savetovanja u instituciji pod nazivom Zajednica holističkih osoba, nakon čega je 1978. godine završila i trogodišnji program energetike jezgra na Institutu za energetiku jezgra u Njujorku. 1979. godine u Fenišia Patvork centru (Fenišia, Njujork) upisala je i petogodišlji program duhovnog isceliteljstva. Eva i Džon Pierakos koji su osnovali sistem lične transformacije, kasnije nazvan Patvork, imali su snažan uticaj na Barbarin dalji život i rad. Nakon uspešne saradnje Brenanova je postala terapeut energetike jezgra i Patvork terapeut.[4] 1977. godine je razvila sopstvenu privatnu isceliteljsku praksu, a ubrzo nakon toga je kreirala i program obuke.[5][6] 2001. godine je doktorirala na Univerzitetu Grinvič u oblasti filozofije, kao i na univerzitetu Holos u oblasti teologije.[7] Oba instituta su neakreditovana.[8] Ideje i teorije Barbarina prva knjiga, Ruke koje leče – vodič kroz lečenje bioenergijom, smatra se klasičnim delom[9] u oblasti duhovnog isceljenja, a odštampana je u više od milion primeraka na 22 jezika. Brenanova tvrdi da za vreme seansi intuitivno dobija informacije o svojim klijentima. Ona uočava određeni obrazac koji se ponavlja u energetskim poljima različitih ljudi, a koji ukazuje na zajedničke korene njihovih problema.[6] U njenim knjigama mogu se pronaći skice ljudskih aura i energetskih polja, kao i njihovi opisi pri međljudskim interakcijama. Zastupala je teoriju o sedmoslojnom modelu ljudskog enrgetskog polja, u kom je svaki sloj pojedinačno sačinjen od različitih frekvencija i zadužen za različite funkcije. Prema njoj, čakre su primaoci i procesori univerzalne energije i neophodne su za zdravo funkcionisanje i izražavanje lične svesti i psihofizičkog sastava. Najpoznatija je po metodičkom pristupu pri lečenju energijom.[6] Kreirala je i isceljujuću metodu koju je nazvala `celokupnim isceljenjem` i koja deluje na svih sedam slojeva ljudskog energetskog polja ili aure.[4] Sedam čakri čoveka Koncept „hara” U svojoj drugoj knjizi, „Izranjanje svetlosti”, svom modelu o ljudskim energijama Barbara je dodala i model o hotimičnosti, nazvan „Hara”. Hara je osnovna jedinica građe ljudskog energetskog polja (aure) i održava ljudsko telo u materijalnoj manifestaciji sve dok životna svrha pojedinca ne bude ispunjena. Ako je hara zdrava, čovek bez teškoća deluje prirodno i u skladu sa svojom svrhom. Iz tog razloga, kao veoma važnu stavku, Barbara ističe isceljenje hare koje dovodi do isceljenja aure i konačno, isceljenja tela. U istoj knjizi govorila je i o „zvezdanom jezgru”, individualnom božanstvu čoveka koje je povezano sa univerzumom.[10] Škola duhovnog isceliteljstva Barbara Brenan 1982. druge godine zatvorila je svoju privatnu praksu u Njujorku i osnovala Školu duhovnog isceliteljstva Barbara Brenan, usmerenu obučavanju profesionalnih iscelitelja širom sveta. Od 2000. godine, škola se nalazi na Floridi i licencirana je od strane Komisije za nezavisno obrazovanje nezavisne države Floride.[11] 2003. godine, istoimena škola otvorena je i u Evropi, a njena tačna lokacija promenjana je nekolicinu puta. Prvobitno se nalazila u u Mondzeu u Austriji, nakon čega se preselila u Bad Nojenar u Nemačkoj 2006. godine, te se 2008. godine konačno vratila u Austriju u mali grad Bad Išl. 2007. godine otvorena je nova filijala u Tokiju u Japanu i zatvorena 2010. Škola Barbara Brenan odškolovala je 2700 maturanata širom sveta, preko 224 visoko kvalifikovanih nastavnika i 188 praktičara Brenan integracije. Barbara Brenan je u penziji i više ne predaje u školi, mada praktičari ove metode lečenja i dalje šire njen rad na Floridi, i planiraju globalnu ekspanziju u bliskoj budućnosti. Barbara Brenan škola takođe omogućava polaznicima neakreditovani sertifikat o stepenu obrazovanja iz oblasti Brenan nauke o isceljenju.

Prikaži sve...
1,390RSD
forward
forward
Detaljnije

Antun Gustav Matoš EsejiTvrdi povezIzdavač NolitAntun Gustav Matoš hrvatski je novelist, esejist, feljtonist, humorist, kozer, pjesnik, kritičar, polemičar, putopisac. Najvažniji je predstavnik hrvatske moderne, a hrvatsku književnost usmjerio je prema europskim strujanjima. Smatra se prvim modernim književnim, glazbenim, likovnim i plesnim kritičarom. Rođen je u Tovarniku u Srijemu 1873. godine, gdje mu je otac službovao kao učitelj. Djed mu Grgur bio je čuveni bački učitelj, a počeo je karijeru kao samostanski orguljaš. Ovaj talent za glazbu prenosio se na njegove potomke, jer je i Matošev otac bio učitelj i vrstan orguljaš u crkvi Svetoga Marka u Zagrebu. Antun Gustav, zvan Gustl, bio je i violončelist, što će mu vrijediti u mladenaštvu. Baka mu je bila Mađarica, kći liječnika, ali je govorila ikavski hrvatski odlično, kao i djed. Živjeli su u bunjevačkome mjestu Kaćmaru blizu Subotice. Majka Marija rođ. Schams porijeklom je sudetska Njemica, rođena u Našicama. Gustlovi su se roditelji 1875. godine, kad je Matoš imao dvije godine, preselili iz Tovarnika u Zagreb. Tamo je dobio sestru (kasnije uspješnu opernu pjevačicu i pijanisticu) i dva brata (kasnije profesora geografije i financijskoga službenika). »Ja sam, dakle, Bunjevac porijeklom, Srijemac rodom, a Zagrepčanin odgojem« – napisao je Matoš u svojoj autobiografiji. Svoga rodnoga mjesta ne bi se ni sjećao da ga nije vidio kad je kao mladić otišao u Srbiju.Jedna od poznatijih anegdota o njegovu školovanju jest ona o vremenu kad je imao trinaestak godina. Matoš je uvijek nosio u džepovima knjige, pa je tako dolazio i u školu (s više književnih djela nego školskih knjiga). Pod satom je nekoga zadirkivao, što li, i najednom vikne profesor: – Matoš! Vi fakin jedan! – Matoš ustane, izvadi desnom rukom iz desnog džepa Shakespeareovu dramu, lijevom rukom iz lijevog džepa (ili obratno) jedan svezak Byrona, digne obadvije ruke uvis i reče: – Fakin ne sjedi u društvu između Shakespearea i Byrona.Bio je nadaren đak i redovite i glazbene škole, ali nije redovito učio. Stoga je dva puta pao (današnji) treći razred gimnazije iz hrvatskog jezika, fizike i propedeutike. Roditelji su ga potom 1891. poslali u Beč na Vojni veterinarski institut, smatrajući kako će ga tamošnja stega natjerati da se disciplinira i da se kasnije bavi unosnim pozivom veterinara. No on je radije čitao romantičarske pisce poput Hoffmanna i Byrona, svirao tamo violončelo s glazbenicima. Nije položio sve ispite u prvome semestru i izgubio je stipendiju. Vratio se u Zagreb. Čitao je, posjećivao onodobne intelektualce (od kojih su mu neki bili rođaci). Kad je imao devetnaest godina (1892.) bila mu je tiskana novela Moć savjesti u uglednom časopisu Vienac, i novela D-dur sonata u časopisu Obzor. Najviše su ga impresionirali Ante Starčević i ban Ivan Mažuranić, a đačke uspomene su mu vezane uz sviranje dueta sa Stjepanom Radićem. Bijaše to čudan spoj – »on udaraše u tamburu, a ja sam pratio na violončelu«. Divni bijahu to dani, kako ih se spominje Matoš. Družio se sa slikarima, piscima i glazbenicima. Violončelo mu je otvaralo vrata u mnoge zagrebačke kuće gdje se muziciralo i razgovaralo o svemu i svačemu, i gdje su s njime svirali ponajbolji mladi školovani virtuozi.4/7

Prikaži sve...
399RSD
forward
forward
Detaljnije

U dobrom stanju Izabrana djela / Marcel Šnajder ; izbor, redakcija tekstova i pogovor Jelena Berberović Vrsta građe izabrana dela Jezik bosanski Godina 1986 Izdavanje i proizvodnja Sarajevo : Svjetlost, 1986 (Novi Sad : Budućnost) Fizički opis 369 str. ; 20 cm Drugi autori - osoba Berberović, Jelena, 1938- Azinović, Mirko Biblioteka Kulturno nasljeđe Bosne i Hercegovine Str. 7-8: Uvod / Jelena Berberović: Str. 255-326: Marcel Šnajder - život i djelo / Jelena Berberović Napomene i bibliografske reference uz tekst Str. 327-361: Bibliografija radova Marcela Šnajdera / Mirko Azinović Registar. Marcel Šnajder (Dembica, Austro-Ugarska Monarhija 28. 1. 1900 – ?, 1941), jugoslavenski filozof i matematičar, jedan od prvih doktora filozofije u Bosni i Hercegovini za vrijeme Kraljevine Jugoslavije. Dr. Marcel Šnajder je rođen u jevrejskoj porodici 28. 1. 1900 godine u Debici (današnja Poljska) za vrijeme Austro-Ugarske Monarhije. Odatle su mu roditelji, u njegovom ranom djetinjstvu, s činovničkom službom prešli u bosansko-hercegovačku provinciju. Klasično gimnazijsko školovanje započeo je u Mostaru i, u godinama Prvog svjetskog rata, nastavio i završio u Travniku. Opseg njegovog talenta i intelektualnog interesa bio je već u ovim gimnazijiskim godinama toliko prostran da ga nije mogao ispuniti program školskog obrazovanja i dosta opsežno, ali pažljivo kontrolisane školske lektire. U godinama nakon rata upisao je univerzitetske studije u Zagrebu i Beču. Studirao je godinu dana u Zagrebu, a zatim u Beču filozofiju tj. čistu filozofiju, matemutiku i fiziku.[2] 1924 godine Marcel je završio studije matematike i filozofije na Zagrebačkom univerzitetu i iste godine predao doktorsku disertaciju pod naslovom `Pokušaj određenja istine`, a koju je sa istaknutim uspjehom odbranio 1925 godine. 1924 godine zaposlio se kao profesor matematike i filozofije na `I ženskoj gimnaziji` u Sarajevu, odakle je 1939 godine iz političkih razloga za kaznu bio premješten u Gornji Milanovac, gdje ga je i zatekao Drugi svjetski rat. Njegovo prisustvo odmah se osjetilo u krugu naprednih nastavnika sarajevskih srednjih škola gdje je, zajedno sa Ognjenom Pricom, Stjepanom Tomićem, Jovanom Kršićem i Kalmijem Baruhom unosio novi duh i nova shvatanja o ulozi škole i nastavnika u društvenim kretanjima. Od učenika je tražio mnogo i postizao mnogo, ne sredstvima pritiska, straha i nametnute discipline, nego svojim sistemom nastave iz kojeg je uvijek zračio i njegov pogled na svijet. Marcel nikad nije spadao među one, ne tako rijetke, intelektualce koji su svoja napredna ubjeđenja zadržavali za sebe i u sebi. On ih je smjelo iznosio u javnost u napisima i javnim predavanjima. Kao simpatizer komunizma bio je trn u oku vlastima Kraljevine Jugoslavije, naročito klerofašističkih krugova. Bio je poznat kao izvrstan predavač, velike opšte kulture, i dobar znalac književnosti i umjetnosti. Vladao je ruskim, poljskim, njemačkim i francuskim jezikom. Obim Marcelovog naučno-publicističkog djela obuhvata preko 40 radova, pretežno objavljenih u časopisu `Pregled`« u periodu od 1932 do 1940 godine, koji se, velikom većinom odnose na filozofske i sociološke teme. U oblast matematike spadaju njegove naučne rasprave, recenzije i udžbenici, te radovi koji su objavljeni u stručnim časopisima i posebnim knjigama, ili preostali u rukopisima. Najvažniji mu je rad prevod Kantova `Vječnog mira`, koji je snabdio predgovorom. Posljednjih dana jula 1941 godine ustaše su uhapsile Marcela zajedno za Perom Pešutom. Odveden je i ubijen iste godine negdje u ustaškim jamama u Lici.

Prikaži sve...
990RSD
forward
forward
Detaljnije

Aristotel Politika Tvrdi povez Prevod Tomislav Ladan 1988 Zagreb Politika (gr. Πολιτικά) je jedno od značajnijih djela antičkog grčkog filozofa Aristotela, u kojem je on iznio jednu od prvih teorija političke filozofije o nastanku države. Naslovna reč politika doslovno znači `stvari vezane za polis`. Na kraju druge Aristotelove knjige, Nikomahove etike, stoji da istraživanje o etici nužno prelazi u politiku, pa se ova dva dela često smatraju delovima veće rasprave, ili možda serije predavanja koja se bave `filozofijom ljudskih stvari`. Aristotel (grč. Αριστοτέλης;[2] 384. p. n. e. — 322. p. n. e.)[3] bio je starogrčki filozof i besednik, Platonov učenik i jedna od najuticajnijih ličnosti u istoriji evropske misli.[4][5][6] Aristotel je bio grčki filozof i naučnik koji je rođen makedonskom gradu Stagira, Halkidiki, na severnoj periferiji klasične Grčke.[7] Njegov otac, Nikomah, je umro kad je Aristotel bio dete, nakon čega je Proksenus od Atarneusa postao njegov staratelj. U svojoj osamnaestoj godini, pošao je na Platonovu akademiju u Atini i ostao je tamo do svoje 37. godine (c. 347 p. n. e.). Njegovi rukopisi pokrivaju mnoge teme – uključujući fiziku, biologiju, zoologiju, metafiziku, logiku, etiku, estetiku, poetiku, pozorište, muziku, retoriku, lingvistiku, politiku i vladu – i čine prvi sveobuhvatni sistem zapadne filozofije. Ubrzo nakon Platonove smrti, Aristotel je napustio Atinu i, na zahtev Filipa Makedonskog, podučavao je Aleksandara Velikog počevši od 343 p. n. e.[5] Prema pisanju Encyclopædia Britannica, „Aristotel je bio prvi istinski naučnik u istoriji ... [i] svaki naučnik mu duguje.“[6] Podučavanje Aleksandra Velikog je pružilo Aristotelu mnoge mogućnosti i obilje materijala. On je osnovao biblioteku u Liceju koja je pomagala u produkciji mnogih od njegovih stotina knjiga. Činjenica da je Aristotel bio Platonov učenik je doprinela njegovom ranom gledištu platonizma, međutim nakon Platonove smrti, Aristotel se uronio u empirijska izučavanja i udaljio se od platonizma u korist empirizma.[8] On je verovao da svi ljudski koncepti i svo njihovo znanje ultimativno bazirani na percepciji. Aristotelovo gledište na prirodne nauke predstavlja podlogu u osnovi mnogih njegovih radova. Aristotelovi pogledi na fizičke nauke temeljno je oblikovalo gledište srednovekovnih učenjaka. Njegov uticaj doseže do renesanse i nije bio sistematski zamenjen do prosvetiteljstva i teorija kao što je klasična mehanika. Neka od Aristotelovih zooloških opažanja, kao što je hectocotyl (reproduktivna) ruka oktopusa, nisu potvrđena, niti osporena do 19. veka. Njegovi radovi sadrže najraniju poznatu studiju logike, koja je inkorporirana u kasnom 19. veku u modernu formalnu logiku. Aristotel je rođen u Stagiri, grčkoj koloniji na makedonskom poluostrvu. Njegov otac, Nikomah, radio je kao dvorski lekar kod kralja Amintasa III Makedonskog, dede Aleksandra Velikog. Veruje se da su Aristotelovi preci bili na ovoj dužnosti i kod ranijih makedonskih kraljeva. Pretpostavlja sa da je, kada je otišao u Atinu sa 18 godina, Aristotel imao i neka znanja iz medicine koja je dobio od oca. Od 18. do 37. godine pohađa Akademiju kao Platonov učenik. Razlike u filozofskim stavovima bile su osnova za stvaranje raznih legendi o odnosima Platona i Aristotela. Evidentno je da su neslaganja u stavovima postojala, pošto Aristotel vrlo rano pokazuje interesovanje za prirodne činjenice i zakone za razliku od Platonovih idealističkih stavova. Bilo kako bilo, nema nikakvih dokaza da su za vreme Aristotelovog boravka na Akademiji odnosi između dvojice filozofa bili zategnuti ili prekinuti. Zapravo, Aristotelovo ponašanje posle Platonove smrti, njegova stalna saradnja sa Ksenokratom i ostalim platonistima, te reference na Platonovo učenje u njegovim delima dokazuju da je, iako je i bilo sukoba mišljenja između Aristotela i Platona, među njima postojalo duboko razumevanje i tolerancija. Takođe, priče kažu da je Aristotel najviše neslaganja imao sa epikurejcima, koji su bili poznati i kao „klevetnici“. Iako se ovakve legende često nalaze kod ranih hrišćanskih pisaca kao što su Justin Isposnik i Grigorije Nazijazin, razlog leži najviše u čvrstom sistemu vrednosti koji su Aristotelu usadili rani hrišćanski jeretici, a ponajmanje u nekom dobro utemeljenom istorijskom verovanju. Posle Platonove smrti (346. p. n. e.), Aristotel sa Ksenokratom odlazi na dvor Hermijasa, vladara Atarnije u Maloj Aziji i ženi se sa Pitijom, vladarevom nećakinjom i pokćerkom. Godine 344. p. n. e., Hermijas gine u pobuni i Aristotel sa porodicom odlazi u Mitilenu. Posle godinu-dve, na poziv kralja Filipa II Makedonskog odlazi u rodnu Stagiru da bi postao tutor Aleksandra Velikog, koji je tad imao 13 godina. Plutarh piše da Aristotel Aleksandra nije poučavao samo etici i politici već ga je upućivao i u daleko dublje tajne filozofije. Mnoštvo je dokaza da je Aleksandar mnogo naučio od Aristotela, a i da je Aristotel imao koristi poučavajući mladog princa (iako se Bertrand Rasel ne slaže s ovim navodima). Zahvaljujući ovom uticaju, Aristotel je od Aleksandra dobijao značajna novčana sredstva za nabavku knjiga, a po svemu sudeći, obnovljena moć Aleksandrove vojske posledica je, barem delimično, i Aleksandrovog odnosa sa Aristotelom. Po navodima Plutarha i Diogena, Filip je 340. p. n. e. godine do temelja spalio Stagiru, Aristotelov rodni grad, ali je Aristotel uspeo nagovoriti Aleksandra da ga obnovi. Oko 335. p. n. e., Aleksandar odlazi u pohod na Aziju a Aristotel, koji je od Aleksandrovog dolaska na makedonski tron imao ulogu neslužbenog savetnika, odlazi ponovo u Atinu i otvara sopstvenu filozofsku školu. Moguće je da je Aristotel, po kazivanju Aula Gelijusa, vodio školu retorike za vreme svog prethodnog boravka u Atini; ali, sada, sledeći Platonov primer, on počinje davati redovne časove iz filozofije u gimnazijumu sagrađenom u čast Apolona Likijskog, po kojem je škola dobila ime Licej.[9] (Škola je takođe bila poznata i kao peripatetička škola pošto je Aristotel voleo da raspravlja o filozofskim pitanjima sa svojim učenicima šetajući gore-dole, peripateo (lagana šetnja), peripatoi (oko gimnazijuma).[10] Za vreme trinaestogodišnjeg perioda (335. p. n. e. — 322. p. n. e.) koji je proveo poučavajući u Liceju, Aristotel je napisao većinu svojih dela. Po uzoru na Platona, piše „Dijaloge“ u kojima popularnim jezikom iznosi osnove svog učenja. Takođe je napisao nekoliko studija (o kojima će biti govora kasnije) o fizici, metafizici itd; u kojima je stil formalniji, a jezik učeniji nego u „Dijalozima“. Ovi tekstovi otkrivaju u kojoj meri su mu bili korisni materijali i pisani izvori koje mu je Aleksandar svojevremeno obezbedio. Oni posebno pokazuju povezanost njegovog učenja sa radovima grčkih filozofa, njegovih prethodnika, te kako je nastavio, lično ili preko drugih filozofa, istraživanja prirodnih pojava. Plinije tvrdi da je Aleksandar stavio pod Aristotelov nadzor sve lovce, ribare i ptičare u svom kraljevstvu te sve nadzornike kraljevskih šuma, jezera, močvara i pašnjaka što je bilo vrlo verovatno uzevši u obzir Aristotelova radove iz zoologije. Aristotel je izuzetno dobro poznavao radove svojih prethodnika tako da Strabon konstatuje da je Aristotel među prvima počeo stvarati veliku biblioteku. U poslednjim godinama Aristotelovog života odnosi između njega i Aleksandra postaju veoma zategnuti zahvaljujući stradanju i kazni Kalistenovoj kojeg je Aristotel svojevremeno preporučio Aleksandru. Bez obzira na sve, u Atini su i dalje smatrali Aristotela Aleksandrovim prijateljem i predstavnikom Makedonije. Naravno, nakon što je u Atinu stigla vest o Aleksandrovoj smrti i nakon što izbili nemiri koji su doveli do Lamijskog rata Aristotel postaje nepopularan kao i svi Makedonci. Atmosferu nepoštovanja i omraženosti, koju su svojevremeno osetili Anaksagora i Sokrat, doživeo je, još bezrazložnije, i sam Aristotel. Napušta Atinu izjavljujući (po svedočenjima mnogih antičkih autoriteta) da neće pružiti Atinjanima šansu da se po treći put ogreše o filozofiju. Nalazi utočište na svom seoskom imanju u Kalkisu u Eubeji gde i umire sledeće godine, 322. p. n. e. od dugogodišnje bolesti. Priče da je njegova smrt posledica trovanja kukutom, kao i legenda da se bacio u more „jer nije mogao objasniti talase“ nemaju istorijske osnove. Vrlo malo se zna o Aristotelovom fizičkom izgledu osim iz njemu nenaklonjenih izvora. Njegove očuvane statue i biste, koje verovatno datiraju iz prvih godina delovanja peripatetičke škole, prikazuju čoveka prosečne visine, oštrih crta lica i pronicljivog pogleda. Na osnovu njegovih tekstova, testamenta (nesumnjivo verodostojnog), odlomaka iz njegovih pisama te svedočenja njegovih objektivnih savremenika zaključujemo da se radilo o visokomoralnom čoveku blage naravi, posvećenog porodici i prijateljima, koji je blago postupao sa svojim robovima, bio milostiv prema svojim neprijateljima i protivnicima i zahvalan svojim dobročiniteljima. Kada je platonizam prestao da dominira svetom hrišćanske misli i kada su se Aristotelovi radovi počeli proučavati objektivno i bez straha, u delima hrišćanskih pisaca 13. veka (isto kao i kod objektivnih pisaca njegovog vremena) Aristotel se opisuje kao čovek blage naravi, dostojanstvene pojave, skroman i bez ijednog moralnog nedostatka, „najveći od onih koji znaju“. Oblici državnog uređenja Aristotel je, za razliku od Platona, više bio orijentisan na istraživanje postojećeg društva. Analizom 158 ustava grčkih polisa, on je podelio državna uređenja na: dobra (monarhija, aristokratija i republika) i loša (tiranija, oligarhija i demokratija).[11] Aristotelovi spisi Glavni članak: Aristotelovi spisi Dela: `Organon` (sakupljeni Aristotelovi logički spisi), Poetika (O pesničkoj umetnosti), `Retorika`, `Nikomahova etika` (Nikomah je bio njegov otac), `Politika`, `Metafizika`, `Fizika`, `O duši`. Njegovi naslednici su učili po njegovim knjigama i po knjigama koje su pisane na osnovu njegovih dela. A, on je prvi koji je objektivno opisao svo dotadašnje znanje. Naglasak na `objektivno`, jer drugi filozofi su pisali dela, pesme, dijaloge. Aristotel je pisao udžbenike, u kojima je prvi put uredno pobrojao sva dotadašnja znanja (i, naravno, dopisao otkrića do kojih je i sam došao). Anticka filozofija, Platon, Drzava, Organon, Metafizika, Fizika...

Prikaži sve...
1,999RSD
forward
forward
Detaljnije
Nazad
Sačuvaj