Filteri
close
Tip rezultata
Svi rezultati uključeni
keyboard_arrow_down
Kategorija
Sve kategorije
keyboard_arrow_down
Od
RSD
Do
RSD
Sortiraj po
keyboard_arrow_down
Objavljeno u proteklih
keyboard_arrow_down
Sajtovi uključeni u pretragu
Svi sajtovi uključeni
keyboard_arrow_down

Pratite promene cene putem maila

  • Da bi dobijali obaveštenja o promeni cene potrebno je da kliknete Prati oglas dugme koje se nalazi na dnu svakog oglasa i unesete Vašu mail adresu.
1-6 od 6 rezultata

Broj oglasa

Prikaz

format_list_bulleted
view_stream
1-6 od 6
1-6 od 6 rezultata

Prikaz

format_list_bulleted
view_stream

Režim promene aktivan!

Upravo ste u režimu promene sačuvane pretrage za frazu .
Možete da promenite frazu ili filtere i sačuvate trenutno stanje

Aktivni filteri

  • Tag

    Tehničke nauke
  • Tag

    Prirodne nauke
  • Cena

    3,000 din - 9,999 din

DOJČINOVIĆ P. IVAN , PURIĆ M.JAGOŠ Ovaj udžbenik je nastao na temelju višedecenijskog iskustva u držanju nastave iz predmeta Fizika atoma na smeru Teorijska i eksperimentalna fizika Fizičkog fakulteta Univerziteta u Beogradu. Udžbenik se grubo može podeliti u dva dela. U prvom delu data je fizika atoma zasnovana na rezultatima klasične fizike, uključujući Borov model atoma (prva tri poglavlja), a u drugom delu je opisana fizika atoma zasnovana na kvantnoj mehanici, uključujući i Dirakovu formulu fine strukture. U četvrtom poglavlju dat je kratak uvod u kvantnu mehaniku, sa naglaskom na formalizmu koji se direktno koristi u fizici atoma. Struktura energetskih nivoa atoma vodonika i vodoniku sličnih atoma i jona opisana je na nivou grube i fine strukture i data zajedno sa kratkim opisom radijativnih prelaza u atomu (poglavlja od 5. do 7). U osmom poglavlju opis drugih atoma počinje sa helijumom, koji se ujedno može posmatrati kao predstavnik atomskih sistema sa dva elektrona. Kako je za višeelektronske sisteme (poglavlje 9) kvantnomehanički račun izuzetno komplikovan, dat je pregled metoda izračunavanja energetskih nivoa i određivanje momenata impulsa, odnosno opis strukture preko sistema termova. Poslednja tri poglavlja opisuju interakciju atoma sa spoljašnjim poljima, magnetnim i električnim (poglavlja 10 i 11), kao i uticaj jezgra na energetske nivoe atoma (poglavlje 12). Na kraju udžbenika nalazi se dodatak, kao i spisak literature.

Prikaži sve...
3,300RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Redje u ponudi u kompletu! 1946 god. Elekrotehnika je nauka, deo fizike koja se, zbog svoje obimnosti i široke primene, a takođe i zato što se u određenim delovima znatno više približila matematici, vremenom izdvojila iz nje i sada predstavlja zasebnu naučnu disciplinu, sa svojim poddisciplinama. Kao glavni predmet proučavanja elektrotehnike najlakše se može reći da je upitanju električna struja. Međutim to nije najsretnije rešenje jer ono što elektrotehnika proučava počiva na samom elektronu kao nasiocu naelektrisanja, pa preko mnogih definicija električnih struja, uključujući i onu da struju možemo posmatrati kao fluid, i to sve od dejstva naelektrisanja na atomskom nivou, preko makroskopskih struja pa sve do struja visokog napona kakve se koriste u elektroenergetici....

Prikaži sve...
9,990RSD
forward
forward
Detaljnije

Lepo očuvano Problems in Theoretical Physics Grechko, L. G., V.I. Sugakov and O.F. Tomasevich: Published by MIR, Moscow, 1977 Contents PREFACE 5 Section I. Classical Mechanics 9 Problems 25 Answers 141 Section II. Electrodynamics 50 Problems 61 Answers 160 Section III. Quantum Mechanics 78 Problems 92 Answers 230 Section IV. Statistical Physics and Thermodynamics 110 Problems 119 Answers 356 APPENDICES 424 1. Basic formulas of vector analysis 424 2. Curvilinear coordinates 425 3. Differential operators in curvilinear coordinates 429 4. Mathematical supplement 434 5. Legendre polynomials 441 6. Hermite polynomials 444 7. The confluent hypergeometric junction 446 BOOKS ON THE SUB1ECT 448 RETKO! RARE! This book is a collection of problems covering mechanics, electrodynamics, nonrelativistic quantum mechanics, !statistical physics and thermodynamics. Each Section opens with a brief outline of the main laws and relationships used to solve the problems. Also information about the needed mathematical apparatus is included. Along with answers there are guides to solving the more complicated problems. SI units are used throughout the book. Problems in Theoretical Physics is intended for physics majors at universities and other institutions of higher learning. Some of the problems are specifically for students majoring in theoretical physics. Certain ones can be used in the physics and mathematics departments of teachers colleges. From the Preface The text draws largely on the Course of Theoretical Physics by L. D. Landau and E. M. Lifshitz, but also makes use of other textbooks and handbooks recommended for the university course in theoretical physics. Some of the problems have been taken from published problem books listed at the end of this book, but many are original. The student will be able to solve the problems if he has a good knowledge of the fundamentals of theoretical physics, which are briefly outlined in each section of this book. Tags: Problemi teorijske fizike / Teorijska fizika moskva izdanja na engleskom

Prikaži sve...
7,990RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Prvo izdanje !!! Fizika Metala Frederick Seitz (4. srpnja 1911. - 2. ožujka 2008.) bio je američki fizičar, lobist duhanske industrije, poricatelj klimatskih promjena i bivši čelnik Nacionalne akademije znanosti Sjedinjenih Država. Seitz je bio 4. predsjednik Sveučilišta Rockefeller od 1968. do 1978. i 17. predsjednik Nacionalne akademije znanosti Sjedinjenih Država od 1962. do 1969. Seitz je bio dobitnik Nacionalne medalje za znanost, NASA-ine nagrade za istaknute javne usluge i drugih počasti . Osnovao je Laboratorij za istraživanje materijala Frederick Seitz na Sveučilištu Illinois u Urbana-Champaignu i nekoliko drugih laboratorija za istraživanje materijala diljem Sjedinjenih Država.[1][2] Seitz je također bio osnivač i predsjednik Instituta George C. Marshall [3], konzultant za duhansku industriju i istaknuti poricatelj klimatskih promjena. Pozadina i osobni život Rođen u San Franciscu 4. srpnja 1911., Seitz je diplomirao u srednjoj školi Lick-Wilmerding sredinom zadnje godine, te nastavio studirati fiziku na Sveučilištu Stanford i stekao diplomu prvostupnika za tri godine, [1] diplomirao je 1932. [4] Oženio se s Elizabeth K. Marshall 18. svibnja 1935. [5] Seitz je umro 2. ožujka 2008. u New Yorku.[6][7] Iza sebe je ostavio sina, troje unučadi i četiri praunučadi.[6] Početak karijere Konstrukcija Wigner–Seitz primitivne ćelije. Seitz se preselio na Sveučilište Princeton kako bi studirao metale kod Eugenea Wignera [1], stekavši doktorat 1934. [6] [8] On i Wigner su bili pioniri jedne od prvih kvantnih teorija kristala i razvili su koncepte u fizici čvrstog stanja kao što je Wigner-Seitz jedinična ćelija[1] koja se koristi u proučavanju kristalnog materijala u fizici čvrstog stanja. Akademska karijera Nakon diplomskog studija, Seitz je nastavio raditi na fizici čvrstog stanja, objavivši The Modern Theory of Solids 1940. godine, motiviran željom da `napiše kohezivni prikaz različitih aspekata fizike čvrstog stanja kako bi tom području dao vrstu jedinstvo koje zaslužuje`. Moderna teorija čvrstih tijela pomogla je objediniti i razumjeti odnose između polja metalurgije, keramike i elektronike. Također je bio konzultant na mnogim projektima povezanim s Drugim svjetskim ratom u metalurgiji, radijacijskim oštećenjima krutih tvari i elektronici, između ostalog. On je, zajedno s Hillardom Huntingtonom, napravio prvi izračun energija formiranja i migracije praznina i intersticijala u bakru, inspirirajući mnoge radove o točkastim defektima u metalima.[1] Opseg njegovih objavljenih radova bio je širok, također pokrivajući `spektroskopiju, luminiscenciju, plastičnu deformaciju, učinke zračenja, fiziku metala, samodifuziju, točkaste defekte u metalima i izolatorima, te znanstvenu politiku`.[1] Na početku svoje akademske karijere, Seitz je radio na fakultetu Sveučilišta u Rochesteru (1935.-37.)[4], a nakon pauze kao istraživač fizičar u General Electric Laboratories (1937.-39.)[4] bio je na Sveučilištu u Pennsylvania (1939. – 1942.), a zatim Carnegie Institute of Technology (1942. – 1949.).[4] Od 1946. do 1947. Seitz je bio direktor programa obuke za atomsku energiju u Nacionalnom laboratoriju Oak Ridge. Imenovan je profesorom fizike na Sveučilištu Illinois, Urbana-Champaign, 1949. godine, postavši predstojnik odjela 1957. te dekan i potpredsjednik za istraživanje 1964. Seitz je također služio kao savjetnik NATO-a.[6] Od 1962. do 1969. Seitz je služio kao predsjednik Nacionalne akademije znanosti Sjedinjenih Država (NAS), s punim radnim vremenom od 1965. [9]. Kao predsjednik NAS-a inicirao je Sveučilišnu istraživačku udrugu, koja je sklopila ugovor s Komisijom za atomsku energiju za izgradnju najvećeg akceleratora čestica na svijetu u to vrijeme, Fermilaba.[1] Bio je predsjednik Sveučilišta Rockefeller od 1968. do 1978. tijekom kojeg je pomogao u pokretanju novih istraživačkih programa u molekularnoj biologiji, staničnoj biologiji i neuroznanosti kao i stvaranju zajedničkog MD-PhD programa sa Sveučilištem Cornell.[6] Povukao se sa Sveučilišta Rockefeller 1979., kada je postao predsjednik emeritus. Konzultantska karijera Nakon što je Seitz objavio rad o tamnjenju kristala, DuPont ga je 1939. zamolio za pomoć oko problema koji su imali sa postojanošću krom žute boje. Postao je `duboko uključen` u njihove istraživačke napore.[10] Između ostalog, istraživao je moguću upotrebu netoksičnog silicijevog karbida kao bijelog pigmenta.[11] Seitz je bio direktor Texas Instrumentsa (1971.-1982.) i Akzona Corporationa (1973.-1982.).[12] Nedugo prije svog umirovljenja 1979. sa Sveučilišta Rockefeller, Seitz je počeo raditi kao stalni konzultant za R.J. Reynolds Tobacco Company, koja je savjetovala njihov program medicinskog istraživanja [13] do 1988. [6] Reynolds je prethodno pružio `vrlo velikodušnu` potporu za biomedicinski rad u Rockefelleru.[14] Seitz je kasnije napisao da je `sav novac potrošen na temeljnu znanost, medicinsku znanost,` i ukazao na istraživanje kravljeg ludila i tuberkuloze koje je financirao Reynolds.[6] Ipak, kasnije akademske studije o utjecaju duhanske industrije zaključile su da je Seitz, koji je pomogao u dodjeli 45 milijuna dolara Reynoldsovog financiranja istraživanja, [15] `odigralo je ključnu ulogu... u pomaganju duhanskoj industriji da proizvede nesigurnost u pogledu utjecaja pušenja na zdravlje.` [16] Prema dopisu duhanske industrije iz 1989., Seitz je opisan kao zaposlenika Philip Morris Internationala kao `prilično starijeg i nedovoljno racionalnog da ponudi savjet.`[17] Godine 1984. Seitz je bio osnivački predsjednik Instituta George C. Marshall [18] [19] i bio je njegov predsjednik do 2001. [20] [21] Institut je osnovan kako bi se zalagao za Stratešku obrambenu inicijativu predsjednika Reagana, [22] ali `u 1990-ima se razgranao i postao jedan od vodećih think tankova koji pokušavaju razotkriti znanost o klimatskim promjenama.` [23] [24] A 1990. izvješće koje je koautorstvo sa suosnivačima Instituta Robertom Jastrowom i Williamom Nierenbergom `centralno informiralo o stajalištu Bushove administracije o klimatskim promjenama uzrokovanim ljudskim djelovanjem`.[25] Institut je također promovirao ekološki skepticizam općenito. Godine 1994. Institut je objavio Seitzov rad pod naslovom Kontroverze o globalnom zagrijavanju i ozonskim rupama: izazov znanstvenom sudu. Seitz je doveo u pitanje mišljenje da su CFC `najveća prijetnja ozonskom omotaču`.[26] U istom radu, komentirajući opasnosti sekundarnog udisanja duhanskog dima, zaključio je da `nema dobrih znanstvenih dokaza da je pasivno udisanje doista opasno u normalnim okolnostima.`[27] Seitz je bio središnja figura među poricateljima globalnog zatopljenja.[6][28] Bio je znanstvenik najvišeg ranga u grupi sumnjivaca koji su, počevši od ranih 1990-ih, odlučno osporavali sugestije da je globalno zatopljenje ozbiljna prijetnja.[29] Seitz je tvrdio da je znanost koja stoji iza globalnog zatopljenja neuvjerljiva i da `sigurno ne opravdava nametanje obveznih ograničenja emisija stakleničkih plinova`.[29] Godine 2001. Seitz i Jastrow postavili su pitanje je li globalno zatopljenje antropogeno.[30] Seitz je 1995. potpisao Deklaraciju iz Leipziga i, u otvorenom pismu pozivajući znanstvenike da potpišu peticiju o globalnom zatopljenju Oregonskog instituta za znanost i medicinu, pozvao je Sjedinjene Države da odbace Protokol iz Kyota.[6] Pismo je bilo popraćeno člankom od 12 stranica o klimatskim promjenama koji je slijedio stil i format gotovo identičan prilogu Proceedings of the National Academy of Sciences (PNAS), znanstvenom časopisu, [31] uključujući čak i datum publikacija (`26. listopada`) i broj sveska (`Vol. 13: 149–164 1999`), ali zapravo nije bila publikacija Nacionalne akademije znanosti (NAS). Kao odgovor, Nacionalna akademija znanosti Sjedinjenih Država poduzela je ono što je New York Times nazvao `izvanrednim korakom pobijanja stajališta jednog [od] svojih bivših predsjednika.` [6] [32] [33] NAS je također jasno dao do znanja da `Peticija ne odražava zaključke stručnih izvješća Akademije.` Seitz je opsežno surađivao s Fredom Singerom tijekom njegove konzultantske karijere za duhanske i naftne korporacije u pitanjima zdravlja i klimatskih promjena.

Prikaži sve...
6,990RSD
forward
forward
Detaljnije

Lepo očuvano Solid State Physics by G. I. Epifanov ( Mir Publishers Moscow, 1979, Hardcover ) Author: G. I. Epifanov, D.Sc. Publisher: Mir Publishers, Moscow. Title: Solid State Physics. Printed in: Moscow, Russian Federation. Edition 1st English Edition 1979 info: This is a book which covers the topic of solid state physics comprehensively. Starting from the structure of matter and various types of bonds in the first chapter the mechanical properties are treated in the second chapter. The second chapter also includes a discussion of Hooke`s Law, plastic flow, dislocations, elasticity etc. The third chapter deals with statistical mechanics and discusses degenerate and non-degenerate ensembles and various distribution functions. The fourth chapter looks at thermal properties of solids with reference to crystal lattice, heat capacity, heat conductivity etc. The fifth chapter discusses band theory of solids with reference to energy spectrum, effective mass and semiconductors. Some of the graphs in this chapter are revealing of the physical processes in the working of band structure. Sixth and seventh chapter deal with electrical and magnetic properties of solids. Sixth chapter also discusses deviations from Ohm`s Law (Section 58). Seventh chapter includes discssion on various types of magnetism their origins, and magnetic properties of solids and atoms along with magnetic resonance. Eighth chapter discusses contact phenomenon, work functions between different of materials including p-n junctions. The last chapter discusses thermoelectric and galvanomagnetic phenomena including Seeback effect, Peltier effect, Thomson effect and some of their practical applications. As in the first edition, the presentation of material has followed the aim of elucidating the physical nature of the phenomena dis­cussed. But, where possible, the qualitative relations are also pre­sented, often though without rigorous mathematics. The book was translated from the Russian by Mark Samokhvalov and was published by Mir in 1979. Contents Preface 5 1 Bonding. The Internal Structure of Solids § 1 The van der Waals forces 11 § 2 The ionic bond 15 § 3 The covalent bond 16 § 4 The metallic bond 21 § 5 The hydrogen bond 22 § 6 Comparison between bonds of various kinds 23 § 7 Forces of repulsion 24 § 8 Crystal lattice 25 § 9 Notation used to describe sites, directions, and planes in a crystal 29 §10 Classification of solids based on the nature of bonds 32 §11 Polymorphism 38 §12 Imperfections and defects of the crystal lattice 42 2 Mechanical Properties of Solids § 13 Elastic and plastic deformations. Hooke’s law 46 § 14 Principal laws governing plastic flow in crystals 51 § 15 Mechanical twinning 55 § 16 Theoretical and real shear strengths of crystals 56 § 17 The dislocation concept. Principal types of dislocations 58 § 18 Forces needed to move dislocations 64 § 19 Sources of dislocations. Strengthening of crystals 66 § 20 Brittle strength of solids 71 § 21 Time dependence of the strength of solids 77 § 22 Methods of increasing the strength of solids 81 3 Elements of Physical Statistics § 23 Methods used to describe the state of a macroscopic system 84 § 24 Degenerate and nondegenerate ensembles 88 § 25 The number of states for microscopic particles 91 § 26 Distribution function for a nondegenerate gas 94 § 27 Distribution function for a degenerate fermion gas 96 § 28 Distribution function for a degenerate boson gas 103 § 29 Rules for statistical averaging 105 4 Thermal Properties of Solids § 30 Normal modes of a lattice 107 § 31 Normal modes spectrum of a lattice 110 § 32 Phonons 112 § 33 Heat capacity of solids 115 § 34 Heat capacity of electron gas 120 § 35 Thermal expansion of solids 122 § 36 Heat conductivity of solids 126 5 The Band Theory of Solids § 37 Electron energy levels of a free atom 133 § 38 Collectivization of electrons in a crystal 136 § 39 Energy spectrum of electrons in a crystal 138 § 40 Dependence of electron energy on the wave vector 142 § 41 Effective mass of the electron 147 § 42 Occupation of bands by electrons. Conductors,dielectrics, and semiconductors 151 § 43 Intrinsic semiconductors. The concept of a hole 153 § 44 Impurity semiconductors 156 § 45 Position of the Fermi level and free carrier concentration in semiconductors 159 § 46 Nonequilibrium carriers 166 6 Electrical Conductivity of Solids § 47 Equilibrium state of electron gas in a conductor in the absence of an electric field 169 § 48 Electron drift in an electric field 170 § 49 Relaxation time and mean free path 171 § 50 Specific conductance of a conductor 173 § 51 Electrical conductivity of nondegenerate and degenerate gases 174 § 52 Wiedemann-Franz-Lorenz law 176 § 53 Temperature dependence of carrier mobility 177 § 54 Electrical conductivity of pure metals 183 § 55 Electrical conductivity of metal alloys 184 § 56 Intrinsic conductivity of semiconductors 188 § 57 Impurity (extrinsic) conductivity of semiconductors 190 § 58 Deviation from Ohm’s law. The effect ofa strong field 193 § 59 The Gunn effect 195 § 60 Photoconductivity of semiconductors 196 § 61 Luminescence 203 § 62 Fundamentals of superconductivity 207 7 Magnetic Properties of Solids § 63 Magnetic field in magnetic materials 224 § 64 Magnetic properties of solids 225 § 65 Magnetic properties of atoms 232 § 66 Origin of diamagnetism 238 § 67 Origin of paramagnetism 240 § 68 Origin of ferromagnetism 247 § 69 Antiferromagnetism 254 § 70 Ferrimagnetism. Ferrites 255 § 71 Magnetic resonance 257 § 72 Fundamentals of quantum electronics 259 8 Contact Phenomena § 73 Work function 265 § 74 Contact of two metals 268 § 75 The metal-semiconductor contact 271 § 76 Contact between two semiconductors of different types of conductivity 278 § 77 Physical principles of semiconductor p~n junction devices 288 § 78 Fundamentals of integrated circuit electronics (microelectron­ ics) 299 9 Thermoeleletric and Galvanomagnetic Phenomena § 79 The Seebeck effect 302. § 80 The Peltier effect 307 § 81 The Thomson effect 310 § 82 Galvanomagnetic phenomena 310 § 83 Practical applications of thermoelectric and galvanomag­netic phenomena 315 Appendices I Derivation of the Maxwell-Boltzmann distribution function 317 II Derivation of the Fermi-Dirac distribution function 318 III Derivation of the Bose-Einstein distribution function 320 IV Tables 321 Glossary of Symbols and Notations 322 Bibliography 326 Index 329 Fizika strucna literatura iz fizike naucne knjige prirodne nauke

Prikaži sve...
7,990RSD
forward
forward
Detaljnije

odlično stanje U teorijskoj fizici, kvantna teorija polja je teorijski okvir koji kombinuje klasičnu teoriju polja, specijalnu relativnost i kvantnu mehaniku[1] i koristi se za konstrukciju fizičkih modela subatomskih čestica (u fizici čestica) i kvazičestica (u fizici kondenzovane materije). Kvantna teorija polja tretira čestice kao pobuđena stanja (koja se nazivaju i kvanti) njihovih temeljnih polja, koja su, u određenom smislu, fundamentalnija od osnovnih čestica. Interakcije između čestica opisane su pojmovima interakcije u Lagranžijanovoj teoriji polja koja uključuje njihova odgovarajuća polja. Svaka interakcija može biti vizuelno predstavljena Fajmanovim dijagramima, koji su formalni računski alati u procesu relativističke teorije perturbacija. Kao uspešan teorijski radni okvir danas, kvantna teorija polja proizašla je iz rada generacija teorijskih fizičara 20. veka. Njen razvoj je počeo 1920-ih sa opisom interakcija između svetlosti i elektrona, kulminirajući u prvoj kvantnoj teoriji polja - kvantnoj elektrodinamici . Velika teorijska prepreka ubrzo je usledila sa pojavom i postojanošću raznih beskonačnosti u perturbativnim proračunima, problem koji je rešen tek pedesetih godina prošlog veka izumom renormalizacijske procedure. Druga velika prepreka bila je očigledna nesposobnost kvantne teorije polja da opiše slabe i jake interakcije, do te mere da su neki teoretičari tražili napuštanje teorijskog pristupa. Razvoj teorije kalibra i završetak Standardnog modela 1970-ih doveli su do renesanse kvantne teorije polja. Teorijska osnova Uredi Linije magnetnog polja vizualizovane upotrebom gvožđa. Kada je komad papira posut gvozdenim strugotinama i postavljen iznad magnetnog šipka, strugotine se poravnavaju prema smeru magnetnog polja, formirajući lukove. Kvantna teorija polja je rezultat kombinacije klasične teorije polja, kvantne mehanike i posebne relativnosti.[1] Najstarija uspešna klasična teorija polja je ona koja je nastala iz Njutnovog zakona univerzalne gravitacije, uprkos potpunoj odsutnosti koncepta polja iz njegovog traktata iz 1687. godine Matematički principi prirodne filozofije. Sila gravitacije koju opisuje Njutn je „akcija na daljinu” - njeni efekti na udaljene objekte su trenutni, bez obzira na udaljenost. Matematički fizičari su tek u 18. veku otkrili prikladan opis gravitacije na osnovu polja - numeričke veličine (vektor) dodeljene svakoj tački u prostoru koja ukazuje na delovanje gravitacije na bilo koju česticu u toj tački. Međutim, ovo se smatralo samo matematičkim trikom. [2] Polja su počela da preuzimaju sopstveno postojanje sa razvojem elektromagnetizma u 19. veku. Majkl Faradej je 1845. skovao engleski termin „polje” (engl. field). On je unosio polja kao svojstva prostora (čak i kada je lišen materije) koja imaju fizičke efekte. On se protivio „akciji na daljinu` i predložio da se interakcije između objekata odvijaju kroz „linije sile” koje ispunjavaju prostor. Ovaj opis polja ostaje do danas.[3][4][5] Teorija klasičnog elektromagnetizma završena je 1862. godine sa Maksvelovim jednačinama, koje su opisale odnos između električnog polja, magnetnog polja, električne struje i električnog naboja. Maksvelove jednačine podrazumevale su postojanje elektromagnetnih talasa, fenomen gde se električna i magnetska polja šire iz jedne prostorne tačke u drugu pri konačnoj brzini, koja ispada da je brzina svetlosti. „Akcija na daljinu” je tako konačno odbačena.[3] Uprkos ogromnom uspehu klasičnog elektromagnetizma, nije mogao da uzme u obzir diskretne linije u atomskom spektru, niti raspodelu zračenja crnog tela u različitim talasnim dužinama.[6] Plankovo istraživanje zračenja crnog tela označilo je početak kvantne mehanike. On je tretirao atome, koji apsorbuju i emituju elektromagnetno zračenje, kao sitne oscilatore sa ključnim svojstvom da njihove energije mogu da preuzmu samo niz diskretnih, a ne kontinuiranih vrednosti. Oni su poznati kao kvantni harmonički oscilatori. Ovaj proces ograničavanja energije na diskretne vrednosti zove se kvantizacija.[7] Na osnovu ove ideje, Albert Ajnštajn je predložio 1905. godine objašnjenje za fotoelektrični efekat, da se svetlost sastoji od pojedinačnih paketa energije koji se nazivaju fotoni (kvant svetlosti). To implicira da elektromagnetno zračenje, dok su talasi u klasičnom elektromagnetnom polju, takođe postoji u obliku čestica.[6] Nils Bor je 1913. godine uveo Borov model atomske strukture, pri čemu elektroni unutar atoma mogu preuzeti samo niz diskretnih, a ne kontinuiranih energija. Ovo je još jedan primer kvantizacije. Borov model uspešno je objasnio diskretnu prirodu atomskih spektralnih linija. Godine 1924. Luj de Broj je predložio hipotezu o dualnosti talasa i čestica, da mikroskopske čestice pokazuju osobine i talasa i čestica u različitim okolnostima.[6] Ujedinjavanje ovih raspršenih ideja, koherentna disciplina, kvantna mehanika, formulisana je između 1925. i 1926. godine, sa važnim doprinosima de Broja, Vernera Hajzenberga, Maksa Borna, Ervina Šredingera, Pola Diraka i Volfganga Paulija.[2]:22-23 Iste godine kada je izašao i njegov rad o fotoelektričnom efektu, Ajnštajn je objavio svoju teoriju posebne relativnosti, izgrađenu na Maksvelovom elektromagnetizmu. Nova pravila, nazvana Lorencova transformacija, data su za način na koji se vremenske i prostorne koordinate događaja menjaju pod promenama brzine posmatrača, a razlika između vremena i prostora je zamagljena.[2]:19 Predloženo je da svi fizički zakoni moraju biti isti za posmatrače pri različitim brzinama, tj. da su fizički zakoni invarijantni pod Lorencovim transformacijama. Ostale su još dve teškoće. Šredingerova jednačina, na kojoj se temelji kvantna mehanika, mogla bi objasniti stimulisanu emisiju zračenja iz atoma, gde elektron emituje novi foton pod delovanjem spoljnog elektromagnetnog polja, ali nije mogla objasniti spontanu emisiju, gde se elektron spontano smanjuje u energiji i emituje foton čak i bez dejstva spoljašnjeg elektromagnetnog polja. Teorijski, Šredingerova jednačina nije mogla da opiše fotone i bila je u suprotnosti sa principima posebne relativnosti - vreme tretira kao običan broj, dok promoviše prostorne koordinate za linearne operatore kvantna fizika kvant

Prikaži sve...
4,990RSD
forward
forward
Detaljnije
Nazad
Sačuvaj