Filteri
close
Tip rezultata
Svi rezultati uključeni
keyboard_arrow_down
Kategorija
Sve kategorije
keyboard_arrow_down
Od
RSD
Do
RSD
Sortiraj po
keyboard_arrow_down
Objavljeno u proteklih
keyboard_arrow_down
Sajtovi uključeni u pretragu
Svi sajtovi uključeni
keyboard_arrow_down

Pratite promene cene putem maila

  • Da bi dobijali obaveštenja o promeni cene potrebno je da kliknete Prati oglas dugme koje se nalazi na dnu svakog oglasa i unesete Vašu mail adresu.
26-50 od 765 rezultata

Broj oglasa

Prikaz

format_list_bulleted
view_stream
26-50 od 765 rezultata

Prikaz

format_list_bulleted
view_stream

Režim promene aktivan!

Upravo ste u režimu promene sačuvane pretrage za frazu .
Možete da promenite frazu ili filtere i sačuvate trenutno stanje

Aktivni filteri

  • Tag

    Prirodne nauke

Lepo očuvano Sjajne ilustracije Рибе (лат. Pisces) ектотермни су водени кичмењаци који живе готово искључиво у води. Наука која се бави рибама зове се ихтиологија. Постоји преко 33.100 врста риба,[1] што их чини највећом групом кичмењака. Око половине свих кичмењака су рибе, најстарији познати фосили су стари 450 милиона година. За кретање им служе парна и непарна пераја. Дишу шкргама, а срце им има једну преткомору и једну комору и кроз њега протиче редукована крв. Немају мали крвоток. Најразвијенији део мозга је мали мозак. Кичменица је образована и може бити хрскавичава или окоштала. Оплођење је спољашње, а врсте по основу доношења младих могу бити овипарне, ововивипарне и вивипарне.[2] Рибе су врло стара и велика група кичмењака, која се одликује знатном разноликошћу.[3] Оне су широко распрострањене у скоро свим водама на земљи: од високопланинских потока и језера (језеро Титикака, 4.572 m) до највећих морских дубина Маријанског рова, 10.912 m), те од вода које су близу тачке замрзавања до топлих извора.[4][5] У мноштву врста риба у савременој фауни сусрећу се и прави дивови дуги до 20 m и тешки 15—20 тона, као што је морски пас Rhincodon typus, као и патуљци који не нарасту више од једног центиметра. Деле се на хрскавичњаче (Chondrichthyes), у које се између осталих убрајају морски пси и раже, и коштуњаче (Osteichthyes) које обухватају све остале рибе. Надразред Osteichthyes дели се на разреде Actinopterygii (зракоперке) и Sarcopterygii (многоперке и дводихалице из Африке и Аустралије). Некада су постојале и рибе оклопњаче (Placodermi) и бодљикави морски пси (Acanthodii), али су изумрле. Рибе се исто тако деле се и на морске и слатководне. Од морских риба у Јадранском мору је до сада забележено око 400 врста: око 350 из разреда Osteichthyes (коштуњаче) и 50 врста из разреда Chondrichthyes (хрскавичњаче), што износи око 70% познатих врста риба у Средоземном мору (укупно 579 врста и подврста). Иако слатке воде представљају тек мали постотак укупне водене површине, једна трећина свих риба примарно су слатководне врсте. До данас је описано око 10.000 слатководних риба, а сваке године открије се око 200 нових врста. Европска ихтиофауна броји око 316 врста слатководних риба, а смањење њене разноликости последица је ледених доба. Разноврсност[уреди | уреди извор] Рибе су најмногобројнија група кичмењака. Обухватају скоро половину свих кичмењака. У рибе спадају рушљорибе, штитоноше и кошљорибе. Рушљорибе (Ајкуле и раже) живе у морима. Њихове шкрге се не налазе у заједничкој дупљи коју покрива шкржни поклопац, већ свака шкрга има посебан отвор. Отвори се виде на телу, одмах иза главе. Усни отвор ајкула и ража налази се са доње стране главе, а врх главе извучен је у шиљату њушку. Због тога се ајкуле, када нападају, окрећу леђима надоле. И раже су грабљивице. За разлику од ајкула, оне живе на дну мора. Најпознатије врсте су плава ајкула или пас мордуљ и ража каменица. Штитоноше су назив добиле по малим коштаним штитовима који се у пет редова пружају дуж тела. Најпознатије штитоноше су кечига, моруна и јесетра. Кечига живи на дну река (има је у српским равничарским рекама). Велика је грабљивица. Јесетра и моруна су рибе селице: живе у морима, а у време мреста улазе у реке и пливају узводно да би положиле јаја. Могу се наћи и у Дунаву. Кошљорибе су најбројније међу рибама. Живе у свим водама. У српским рекама живе шаран, караш, лињак, мрена, сом, штука, гргеч, смуђ, пастрмка и још много других врста. У мору живе скуша, зубатац, ослић, сардела. Постоје и врсте које су селице. Таква је, на пример, јегуља. Женке јегуље живе у рекама, а мужјаци у морима поред ушћа река. Када дође време размножавања, женке крећу низ реке, улазе у море, срећу се са мужјацима и настављају заједно да пливају. Све јегуље, из свих река Европе, одлазе до једног дела Атлантског океана (Саргаско море). Тамо се мресте и угину. Из јаја се развијају ларве које ношене воденим струјама доспевају на исто место одакле су дошли њихови родитељи. Док стигну тамо, од њих се развијају одрасле јегуље. И опет мужјаци остају у мору, а женке настављају да пливају узводно. И то се понавља милионима година. Нарочито је интересантна једна мала риба — грегорац. Мужјак ове рибе прави од воденог биља гнездо величине ораха. Неколико женки положи јаја у гнездо, а онда их мужјак чува. Неко време води бригу и о младима. Грађа[уреди | уреди извор] Тело је вретенасто и бочно спљоштено, хидродинамичног облика. На телу се разликују: глава, труп и реп. Глава[уреди | уреди извор] Ту се налазе парни носни отвори и велике очи без очних капака. Са стране главе су велики шкржни поклопци испод којих су шкрге. Неке врсте (грабљивице) у усној шупљини имају зубе. Труп и реп[уреди | уреди извор] Од почетка трупа до репа протеже се бочна линија. На граници трупног и репног дела тела налази се анални отвор, а иза њега на мокраћно-полној квржици најпре је полни, а затим мокраћни отвор. Рибе имају парна и непарна пераја. Парна пераја постављена су упоредно с телом. Парна пераја су прсна и трбушна. Прсна пераја учвршћују се на оплечје иза шкржног отвора. Трбушна пераја нису фиксирана за осни скелет, па могу бити смештена на различитим деловима тела. Непарна пераја су леђна, репна и подрепна. Репна пераја код коштуњача је хомоцеркална (реп је изван симетричан, али изнутра кичма се завршава у горњем краку). Врсте репних пераја: Протоцеркална пераја Хетероцеркална пераја Дифицеркална пераја Хомоцеркална пераја Протоцеркална Хетероцеркална Дифицеркална Хомоцеркална Репно пераје је главни орган за покретање. Постоји једно или два леђна пераја и једно подрепно. Постоји још и масно пераје (код породице Salmonidae, Ameiuridae и др) које је смештено с леђне стране, а не садржи никакве коштане потпоре. Кожа[уреди | уреди извор] Састоји се од два слоја, танке поусмине и дебље усмине. Поусмина садржи две врсте слузних жлезда које луче слуз, смањујући тако трење при пливању. У време мреста на површини се јављају бисерни органи, орожнали део поусмине. Усмину граде stratum spongiosum и stratum compactum. Ту су везивно ткиво, живци, пигментне ћелије и љуске (које се преклапају). Пигментне ћелије су меланофори, гуанофори и ксантофори. Љуске које настају из остеобласта грађене су од од два слоја, горњег коштаног и доњег који чини везивно ткиво прожето кречњаком. Такве љуске се називају еласмоиднима (коштаним). Код шаранки љуске су округлог облика – циклоидне, а код гргечки чешљастог облика – ктеноидне. На љускама се уочавају зоне прираста. Зими је метаболизам рибе спорији, а лети бржи. У складу с тим иде и раст рибе, па се зими јављају на љускама тамније, а лети светлије зоне. Могу се налазити и вишећелијске жлезде које су постале органи који емитују светлост – фотофори. У усмини се налазе два снопа колагених влакана у супротним спиралама, тако да се риба може прегибати без набирања коже. Костур[уреди | уреди извор] Мозак и кичмена мождина су заштићени лобањом и кичмом. Скелетни систем грађен је од коштаног ткива које граде два типа костију: кожне или покровне и хрскавичне или заменске кости. Костур лобање[уреди | уреди извор] Лобања је тропибазалног типа (очне орбите близу, тј. одвојене само танким септумом). Доња вилица је за лобању причвршћена хиостилично. Хрскавичне кости настају заменом хрскавице коштаним ткивом. Кожне кости настају из усмине. Лобања се може поделити на живчани и шкржни део. Живчану лобању – Neurocranium – чине затиљна (occipitale), темена (parietale), чеона (frontale) и носна (nasale) регија. Шкржну лобању — Splanchocranium – чини пет пари шкржних лукова и чељусна лук. Вилични лук чине горња и доња вилица. Пети шкржни лук је јако редукован и ту се могу налазити ждрелни зуби, допунски уређај за жвакање. Шкржне лукове покривају шкржни поклопци – operculumi. Костур кичме[уреди | уреди извор] Функција кичме је спречавање скраћивања тела приликом мишићних контракција. Грађена је од коштаног ткива (код коштуњача), па се на њој разликују трупна и репна регија. Чине је пршљенови који се састоје од тела (centrum), живчаних лукова који завршавају леђним трнастим наставком, а код репних пршљенова крвни лукови завршавају се трбушним трнастим наставком. Трупни пршљенови немају доње лукове, већ наставке парапофизе на које се настављају ребра. Тело кичмењака је удубљено с обе стране – амфичелни или двочашкасти пршљенови. У просторима између појединих пршљенова је остатак свитка, који даје већу издржљивост и гибљивост кичме. Постоје два типа ребара, плурална — која иду између мишића — и дорзална — која су интрамускуларна и то су међумишићне кошчице које настају од везивног ткива. Оба типа су причвршћена на тело кичмењака. Неке рибе имају и горња ребра (сардела и лосос). Костур удова[уреди | уреди извор] Непарна леђна пераја (pinnae dorsalis - D) састоје се од унутрашњих коштаних шипчица – radialia и од спољашњих перајних шипчица – lepidotrichia. Пераја су помоћу перајних потпора повезане с костуром. Парна прсна пераја (pterygia pectoralia - P) састоје се од radialia и lepidotrichia. Преко оплечја су причвршћена на слушни део лобање. Оплечје је чврсто везано на осни костур тако да су пераје непокретне. Оплечје чине лопатица (scapula), врањача (coracoideim), доврањача (masocoracoideum) и кожна кост грлењача (cleithrum). Парна трбушна пераја (pterygia ventralia - V) исте су грађе, али везана су на куковље, које је грађено од једне троугласте кости – basopetrygium. Куковље није везано на осни костур. Пераја служе као органи за дизање и спуштање. Прсна пераја служе за окретање и одржавање у одређеном положају. Леђна и трбушна пераја не учествују код активног покретања, али дају телу покретљивост. Репно пераје служи као кормило. Мишићни систем[уреди | уреди извор] Правилна сегментација мишића с двоструким W распоредом миомера и миосепти. Разликују се бији и црвени мишићи. Бији мишићи се контрахују анаеробно па за енергију користе глукозу при чему настаје лактат – млечна киселина. Црвени се мишићи контрахују аеробно, за енергију користе масти, а настаје угљен-диоксид. Систем за дисање[уреди | уреди извор] Рибе имају четири пара шкрга на четири шкржна лука. Међушкржне преграде су редуковане. Са сваке стране шкрге покрива шкржни поклопац – operculum. На унутрашњој страни оперкулума се налази лажна шкрга, pseudobranchia, која се састоји од само једног реда шкржних листића и не учествује у дисању, али се на њој налазе рецептори који помажу у контроли дисања. На свакој шкрги је двоструки ред шкржних листића. Вода улази кроз уста и излази кроз operculum-а ван. У шкржним ресицама крв тече у супротном смеру од пролаза воде. Пут воде – уста отворена, а поклопац затворен па вода улази у ждрело преко шкрга у шкржну пукотину коју затвара operculum. Уста се затварају, а вода излази кроз operculum. Рибе које се повремено задржавају изван воде јер живе у плитким и муљевитим водама могу да удишу ваздух који апсорбују преко цревног епитела, слузокоже, шкржне шупљине или преко коже. Operculum је коштани поклопац. Систем за варење[уреди | уреди извор] Варење започиње устима. Језик је слабо покретан и он је слузави конус без мишића. Код шаранки на задњем делу шкржног костура налазе се ждрелни зуби. Рибе већином усисавају своју храну. Ждрело излучује слуз па кад се нагло отворе уста, долази до усисавања плена. Помоћу мукозне секреције храна пролази кроз ждрело. Једњак је кратак. Желудац није јасно одељен на кардијачни и пилорићки део. Око дуоденума се налазе вратарнићки (пилорићки) привесци који повећавају прехрамбену способност црева. Има их 2—200. Црево је дугачко и без тифлозолиса. Јавља се вилица са зубима. Зуби су окренути према назад и углавном служе за придржавање хране. Већина риба је карниворна. Рибе не могу да жваћу храну јер би им то блокирало проток воде кроз шкрге. Зуби у вилицама и непца служе за придржавање плена. За механичку разградњу хране служе ждрелни зуби. Постоје и хербиворне рибе, које се хране детритусом, омниворне, које се хране суспензијом, па и паразити који сишу телесну течност других риба. Црево које се наставља на желудац је код карнивора кратко, а код хербивора дуго. У већини случајава храна се не разграђује у желуцу помоћу ензима, него се разградња и апсорпција догађа у цреву. У пилорићким наставцима се налазе ензими и они имају главну улогу у апсорпцији масти. Тифлозолис повећава површину цревног епитела како би се повећала површина апсорпције хране. Јетра[уреди | уреди извор] Јетра је непотпуно подељена на десни и леви режањ, а има жучни мехур. Гуштерача је подељена на ендокрини и егзокрини део. Код већине риба постоји жучни мехур, где се сакупљају секрети јетре. Улога јетре је још и складиштење гликогена. Гуштерача је мала и повезана са жучним каналом. Гуштерача и јетра могу бити спојене у хепатопанкреас. Слезена се налази у завоју дуоденума. Слезена је тамноцрвена пирамидална структура која се налази иза желуца или је с њим повезана. Нема дигестивну улогу већ учествује у стварању или разградњи крвних ћелија. Рибљи мехур настаје као леђна избочина једњака. Протеже се између цревног тракта и бубрега дуж целе леђне стране трбушне шупљине. Испуњен је гасом и богат крвним жилама. Рибљи мехур и једњак код physostoma остају повезани помоћу ваздуховода Ductus pneumaticus, потом се тај канал отвара у ждрело и кроз њега се мехур напуни ваздухом (оне гутају ваздух). Ако мехур није повезан с једњаком, као код physochlista оне не гутају ваздух јер имају црвену гасну жлезду која из крви преузима гасове којима пуни мехур. Зид рибљег мехура има капиларна разграњења, rete mirabile, у којима крв тече у супротном смеру од смера у артеријама и венама. Гасове у рибљем мехуру чине 83% азот, 15% кисеоник и 21% угљен-диоксид. Улоге рибљег мехура[уреди | уреди извор] хидростатички орган, па служи за одржавање равнотеже, ширењем мехура риба се диже а скупљањем се спушта јер је специфична тежина рибе једнака специфичној тежини околне воде, респираторни орган, орган за продукцију звука — пролазак гаса између делова мехура и кроз ваздуховод производи звук, орган за примање звука — рибљи мехур је код шаранки повезан с унутрашњим ухом преко Веберовог органа. Зид рибљег мехура састоји се од Tunica externa — компактно везивно ткиво; submucosa — растресита везивна ткива, крвне жиле и живци. Рибљи мехур је хомологан плућима, јер омогућује коришћење атмосферског кисеоника за дисање. Рибе су теже од воде па би без рибљег мехура тонуле. Систем крвотока[уреди | уреди извор] Срце је венско. Састоји се од венског затона, преткоморе и коморе.[6] Из срца излази трбушна аорта. Започиње проширењем, аортином главицом, а касније се из трбушне аорте одвајају 4 доводне шкржне артерије које воде венску крв у шкрге. Четири одводне шкржне артерије носе артеријску крв у главени круг, circus cephalicus, као и у парне корене леђне аорте. Из главеног круга излазе главине артерије које носе артеријску крв у мозак. Венски систем чине портални опток бубрега и јетре, 2 предње и 2 стражње главне вене које воде крв у срце преко Кувијерових протока. У крви се налазе еритроцити с језгром, леукоцити, гранулоцити, моноцити и лимфоцити. Лимфни систем добро је развијен испод коже у мишићима и мезентерама. Нервни систем[уреди | уреди извор] Нервни систем (цеваст) се састоји од мозга, кичмене мождине и нерава. Најразвијенији део мозга риба је средњи мозак. Предњи мозак је мали и има парне хемисфере. Из вентралне регије иду влакна за мирисне режњеве. Основна му је улога организација и координација механизама који настају у другим деловима мозга. Има важну улогу у понашању приликом размножавања. Међумозак садржи епифизу са фоторецепторима и хипоталамус на који се с доње стране наставља левак на који прилеже хипофиза, крвожилни мешчић и доњи режњеви.[7] Средњи мозак је највећи део мозга код риба. Састоји се од крова (tectum opticum) у који улазе оптичка влакна, влакна из бочне пруге, дисајних органа и задњег мозга. Контролише понашање, учење и остале облике комплексног понашања. Ту се налазе и моторни центри. Највише се истичу видни режњеви.[8] Стражњи мозак је велики код добрих пливача. Контролише прецизне и темпиране покрете. Примозак — из њега излази 10 пари лобањских живаца и на њега се наставља леђна мождина. Аутономни нервни систем састоји се од 11 пари можданих живаца. Чула[уреди | уреди извор] Очи: Најосетљивије на жутозелену боју, а то је она таласна дужина која најдубље продире у воду. Састоје се од спљоштене рожњаче чији спољашњи слој замењује очне капке, великих сочива, хрскавичне беоњаче и 6 мишића за покретање очне јабучице. Musculus retractor lentis повлачи сочиво према мрежњачи (фокусирање) иза које се налази жилница из које излази српасти изданак processus falciformis. У жилници се налази и rete mirabile (чудесна мрежица) која има храњиву улогу. Око садржи огледало, то је посебан слој крвних жила богат кристалићима који рефлектују светло. Има још и шареницу.[9] Батипелагичне рибе (живе на дубинама > 1.000 m) немају функционалне очи, а мезопелагичке (200—1.000 m) имају врло велике очи са специјалним прилагођавањима на слаби интензитет светла — телескопске очи (велико сочиво, танка рожњача, додатна ретина). Индекс преламања светлосних зрака износи 1,00. Рожњача има индекс преламања светлости око 1,37. Индекс преламања воде износи 1,33. Зраци светлости се преламају на граници воде и рожњаче, пуно мање него на граници ваздуха и рожнице. Код риба се цело сочиво помиче од или ка мрежљачи (m. retractor lentis) да би се фокусирао објект. Орган слуха: Служи за осећај равнотеже, убрзања и за слух. Унутрашње ухо састоји се од спољашњег, коштаног и унутрашњег опненог лавиринта. Горњи део лавиринта чине 3 полукружна каналића и utriculus, јајаста кесица, а доњи део sacculus, кугласта врећица и лагена. Сензитивна места су utriculus, sacculus и лагена и они у себи садрже слушне каменчиће отолите (lapillus, sagitta, asteriscus). Код риба које чују, унутрашње ухо је у контакту са рибљим мехуром. Рибе могу да производе звук, за стварање јата, дозивање партнера, плашење или упозоравање непријатеља.[10] Механизми производње звука; стимулација трењем пршљена, оперкулума, костију оплећја, зуба, испуштањем гаса из рибљег мехура. Бочна пруга: чине је чулне ћелије неуромасти с чулним длачицама, које стрше у желатинозну куполу, која се помиче покретима воде. Помоћу њих се региструје струјање воде узроковано другим организмима. Њихова улога је процена снаге и правца воденог тока, избегавање препрека, хватање плена. Хеморецептори: Чула за укус, налазе се на устима и ждрелу, на брчићима, а могу бити и на целом телу. Чула за мирис су такође хеморецептори. Налазе се са сваке стране иза носног отвора. Постоје предњи и стражњи носни отвори, тако да на предње вода улази, а на стражње излази. Чуло мириса рибе користе за тражење хране и препознавање пола своје врсте. Мокраћни мехур[уреди | уреди извор] Бубрези — opistonephros — смештени су на леђној страни тела изнад рибљег мехура. Горњи део бубрега pronephros је лимфоидни орган, а доњи део opistonephros је функционалан. Мокраћоводи се страга проширују у мокраћни мехур. Отварају се иза аналног отвора, па не постоји клоака. Отварају се на мокраћнополној папили, прво полни па мокраћни отвор. Амонијак и уреа, тј. азотни остаци излучују се 6 пута више преко шкрга него преко бубрега. Морске рибе имају мању количину соли у крви него што је у морској води захваљујући осморегулаторним процесима. Код слатководних риба количина соли у крви је већа него у околној води па H2O ради осмозе улази у тело, те је морају појачано избацивати. Полни систем[уреди | уреди извор] Полни и мокраћни систем су одвојени. Код мужјака постоје парни семеници, а семеводи се спајају у заједнички семевод и отварају се на мокраћнополној папили. Код женки се налазе парни јајници продуженог облика, као и јајоводи који се отварају посебним полним отвором иза аналног, а испред мокраћног отвора. Ако јајоводи не постоје (Perca fluviatilis — гргеч) јаја се избацују у утробну шупљину. Оплодња је спољашња. Женка полаже икру коју мужјак прелије семеном. Браздање јајета је парцијално, јер су јаја богата жуманцетом. Из јаја се излеже ларва која се неко време храни жуманчаном врећом коју носи са собом. Тек након ресорпције жуманчане вреће ларва добије изглед мале рибе. Посебни орган[уреди | уреди извор] Морски змај Електрични органи: Јака поља за напад или одбрану, слаба за примање електричних чула или за комуникацију, у муљевитим водама. Настају преображајем мишића у ћелије које се називају електроцити. То су мишићне ћелије које су изгубиле способност контракције, а специјализовале су се за стварање јонизацијског тока. Морске рибе су бољи проводници електричне струје од слатководних. Електрорецептори: Настају из неуромаста бочне пруге. Код риба које могу постићи јаку струју електрични органи су смештени у предњем делу тела, а код осталих у репном делу. Служе за детекцију електричног поља.[11] Светлећи органи: присутни су код риба које живе на великим дубинама и 95% риба које живе испод 50 m дубине. Већином је то плаво зелена светлост коју производе фотофоре настале из преображених слузних жлезда. Код многих врста светлост стварају светлеће бактерије смештене у појединим органима. Светлосни органи служе за препознавање полова или за плашење, као и за освајање жртве. Такви светлећи органи се виде и до 15 m далеко. Рибе могу да имају и отровне жлезде, као и да помоћу посебних органа уштрцавају отров у плен. Таксономија[уреди | уреди извор] Drawing of animal with large mouth, long tail, very small dorsal fins, and pectoral fins that attach towards the bottom of the body, resembling lizard legs in scale and development.[12] Dunkleosteus је гигантска преко 10 m дуга праисторијска риба из класе Placodermi. Риболики организми су парафилетска група кичмењака: то је грана (кладус) која обухвата све рибе, а такође садржи и тетраподе, који нису рибе, иако су се развили од риба. Ајкуле и раже су генетски од осталих риба подједнако удаљене колико и од тетрапода (водоземаца, гмизаваца и сисара). Из тог разлога, такве групе као што су „класа рибе“ која се описује у старијим референтним радовима више се не користе у формалној класификацији. Традиционална подела рибе сврстава у три постојеће класе (разреда), док се изумрли облици понекад сврставају у стабло, а понекад у посебну класу:[13][14] Разред (класа) Agnatha (безвиличне рибе); Подразред Cyclostomata (колоусте лампетре); Подразред Ostracodermi (оклопљене безвиличњаче) †; Разред Chondrichthyes (хрскавичаве рибе); Подразред Elasmobranchii (ајкуле и раже); Подразред Holocephali (химере и изумрли сродници); Разред Placodermi (оклопњаче) †; Разред Acanthodii (бодљикаве ајкуле `, понекад сврставане у кошчљорибе)†; Разред Osteichthyes (кошљорибе); Подразред Actinopterygii (зракоперке); Подразред Sarcopterygii (рибе меснатих пераја, преци тетрапода). Горња подела је једна од оних које се најчешће сусрећу у неспецијалистичким и генералним радовима. Многе од наведених група су парафилетичне, по томе што су довеле до појаве узастопних група: безвиличне су преци хрскавичавих риба (Chondrichthyes), које су довеле до појаве хрскавичавих акантоида, предака кошљориба (Osteichthyes). Након филогенетске номенклатуре, рибе су подељене по детаљнијим схемама, са следећим главним групама: Разред Myxini (колоусте) Разред Pteraspidomorphi † (ране виличњаче) Разред Thelodonti † Разред Anaspida † Разред Petromyzontida ili Hyperoartia Petromyzontidae (lampetre) Разред Conodonta (конодонти, конусњаче) † Разред Cephalaspidomorphi † (ране безвиличњаче) (Нерангиране) Galeaspida † (Нерангиране) Pituriaspida † (Нерангиране) Osteostraci † Подстабло Gnathostomata (вилични кичмењаци) Разред Placodermi † (оклопњаче) Разред Chondrichthyes (хрскавичаве рибе) Разред Acanthodii † (бодљикаве ајкуле) Надразред Osteichthyes (кошљорибе) Класа Actinopterygii (зракоперке) Подразред Chondrostei Ред Acipenseriformes (јесетрес и кечиге) Ред Polypteriformes Подред Neopterygii Инфраред Holostei Инфраразред Teleostei (многи редови уобичајених риба) Разред Sarcopterygii (ресоперке) Подразред Actinistia (целаканти) Подразред Dipnoi (дводихалице) † - изумрли таксон Неки палеонтолози сматрају да су Conodonta заправо hordati, а оне су примитивне рибе. За потпуније разумевање ове таксономије, погледајте чланак кичмењаци. Положај у колена Chordata још није решен. Филогенетска истраживања из 1998. и 1999. године подржала су идеју да змијуљице и пакларе формирају природну групу, у Cyclostomata (колоусте), којој је сестринска група Gnathostomata.[15][16] Различите групе риба чине више од половине кичмењака. По подацима из 2006. године постојало је преко 28.000 познатих постојећих врста, од којих су готово 27.000 кошљорибе, a 970 ајкуле, зракоперке и химере и око 108 змијуљица и паклара. Трећина тих врста спада у девет највећих породица; од највећег до најмањег, ове породице су: Cyprinidae, Gobiidae, Cichlidae, Characidae, Loricariidae, Balitoridae, Serranidae, Labridae, и Scorpaenidae. Око 64 породица су монотипске, тј. садрже само по једнну врсту. Коначни укупни број постојећих врста може расти до преко 32,500.[17][18] ex yu udžbenici knjige iz bivše jugoslavije titove Tags: Biologija riba ribarstvo ribolov vrste morske slatkovodne ...

Prikaži sve...
650RSD
forward
forward
Detaljnije

Jako korisno za bilo koju osobu koja se bavi bilo kojom naukom koja se naslanja na matematiku

Prikaži sve...
1,820RSD
forward
forward
Detaljnije

Knjiga ima omot koji se vidi da je oštećen ali kada se on skine knjiga je potpuno očuvana.

Prikaži sve...
250RSD
forward
forward
Detaljnije

Osnove nanomedicine , grupa autora , izdanje DonVas / Nauka . Tabak se odvojio od korice, unutra odlična, čista..može se sanirati

Prikaži sve...
900RSD
forward
forward
Detaljnije

Unutrašnjost list jedan se kupusa,malo podvlačena, tu de se kupusa trag vode. Ok knjiga, može poslužiti. Sifra adp7.6

Prikaži sve...
999RSD
forward
forward
Detaljnije

Drugo izdanje poznatog udzbenika teorijske fizike. Materijal koji se i danas izucava na fakultetima ali je na pristupačnijem nivou. Odstupa od klasicne podele fizike i čitalac se odmah usmerava ka atomskoj teoriji. Izdavac Školska knjiga Zagreb, 1951. Sadžaj se može videti na slikama. Knjige su jako dobro očuvane na suvom mestu u ormanu. Bez mirisa!

Prikaži sve...
1,200RSD
forward
forward
Detaljnije

Korice su se odvojile sto se vidi na slikama na par mesta je zaokruzeno hemijskom izdavac Skolska Knjiga Zagreb 1981

Prikaži sve...
400RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Unutrasnjost u super stanju! Ilustracije: Nedeljko Dragic Matematika (grč. μαθηματική što znači učenje) je formalna i egzaktna nauka, koja je nastala izučavanjem figura i računanjem s brojevima.[3][4] Iako ne postoji opšteprihvaćena definicija matematike, pod matematikom se u širem smislu podrazumeva da je ona nauka o količini (aritmetika), strukturi (algebra), prostoru (geometrija) i promeni (analiza).[5] Matematika je nauka koja izučava aksiomatski definisane apstraktne strukture koristeći logiku.[6] Izučavane strukture najčešće potiču iz drugih prirodnih nauka, najčešće fizike, ali neke od struktura su definisane i izučavane radi internih razloga.[7] Istorijski, matematika se razvila iz potrebe da se obavljanja proračuna u trgovini, vršenje merenja zemljišta i predviđanje astronomskih događaja. Ove tri početne primene matematike se mogu dovesti u vezu sa grubom podelom matematike na izučavanje strukture, prostora i promena.[8][9] Izučavanje strukture počinje sa brojevima, u početku sa prirodnim brojevima i celim brojevima.[4] Osnovna pravila za aritmetičke operacije su definisana u osnovnoj algebri a dodatna svojstva celih brojeva se izučavaju u teoriji brojeva. Izučavanje metoda za rešavanje jednačina je dovelo do razvoja apstraktne algebre koja između ostalog izučava prstenove i polja, strukture koje generalizuju osobine koje poseduju brojevi.[10] Fizički važan koncept vektora se izučava u linearnoj algebri. Izučavanje prostora je počelo sa geometrijom, prvo Euklidovom geometrijom i trigonometrijom u pojmljivom trodimenzionalnom prostoru, ali se kasnije proširila na neeuklidske geometrije koje imaju centralnu ulogu u opštoj relativnosti. Moderna polja geometrije su diferencijalna geometrija i algebarska geometrija. Teorija grupa izučava koncept simetrije, i predstavlja vezu u u izučavanju prostora i strukture. Topologija povezuje izučavanje prostora i izmjene fokusirajući se na koncept kontinuiteta. Razumevanje i opisivanje izmena merljivih promenljivih je glavna karakteristika prirodnih nauka, i diferencijalni račun je razvijen u te svrhe.[11] Centralni koncept kojim se opisuje promena varijable je funkcija. Mnogi prirodni problemi su vodili uspostavljanju veze između vrednosti i količine izmene, i metodi razvijeni pri tome, se izučavaju u diferencijalnim jednačinama. Brojevi koji predstavljaju kontinualne veličine su realni brojevi, i detaljno izučavanje njihovih svojstava i funkcija je predmet analize. Zbog matematskih razloga, uveden je koncept kompleksnih brojeva koji se izučavaju u kompleksnoj analizi. Funkcionalna analiza je skoncentrisana na n-dimenzionalne prostore funkcija postavljajući time osnovu za izučavanje kvantne mehanike.[12] Radi pojašnjavanja i izučavanja osnova matematike, razvijene su oblasti teorija skupova, matematička logika i teorija modela. Važna oblast primenjene matematike je verovatnoća i statistika koja se bavi izučavanjem i predviđanjem slučajnosti i slučajnih pojava. Numerička analiza izučava numeričke metode izračunavanjem a diskretna matematika je zajedničko ime za oblasti matematike koje se koriste u računarskim naukama.

Prikaži sve...
590RSD
forward
forward
Detaljnije

1960 - 464 стране, тврд повез. Књига је почела да се одкоричује код последњег листа, треба да се залепи. Предлисту зацепљен горњи угао.

Prikaži sve...
555RSD
forward
forward
Detaljnije

Tvrd povez - 163 strana GRAĐEVINSKA KNJIGA 2006 Unutrašnjost dobro očuvana - bez pisanja i podvlačenja Stanje kao na fotografijama C - 2 Savremena industrija ne može se razvijati bez retkih elemenata kao što su: germanijum, talijum, berilijum, cirkonijum i dr. Mnogi od njih, ne samo da su retki, već su i rasejani. Tim čudnije je to što se mogu koncentrisati u otpacima prerađenog uglja – pepelu i šljaci. Ova pojava je oživela ceo naučni pravac – geohemiju fosilnih ugljeva. Autor knjige priča o istoriji otkrivanja retkih elemenata u ugljevima, o korišćenju elemenata u primesama i o problemu očuvanja sredine koja je okružuje, a razmatra i niz drugih problema. Tema knjige je geohemija fosilnih ugljeva, kojom se autor bavio četvrt veka, od 1960. do 1985. godine. Knjiga se preporučuje čitaocima koji se interesuju za geologiju, geohemiju i probleme čovekove sredine.

Prikaži sve...
800RSD
forward
forward
Detaljnije

Dz. A. Kolmen - Relativnost za laika 136 strana POLICA 15 U knjizi koja se nalazi pred citaocem razmatraju se osnovne ideje relativistickog shvatanja prostora, vremena i gravitacije. Knjiga je namenjena svima onima koji su dovoljno radoznali da se otisnu u ovu zanimljivu avanturu duha. Neka se citalac ne plasi da ce mu na tom putu biti potrebno neko posebno znanje matematike ili fizike. Knjiga je, kao sto i sam autor kaze, `napisana prvenstveno za one koji imaju nesto malo znanja iz matematike, fizike, ili astronomije, ili ga uopste nemaju.` Na ovom putu citalac ce se sresti sa mnogim pojavama koje, sa stanovista svakodnevnog iskustva, prelaze granicu realnosti, i ciji `pravi` smisao nije lako prihvatiti. Od upornosti citaoca da prodje kroz sva ova iskusenja zavisi i rezultat cele avanture.

Prikaži sve...
150RSD
forward
forward
Detaljnije

Kao na slikama retko u ponudi prelepe ilustracije iz doba ex yu Гмизавци (лат. Reptilia — Рептили) су одиграли изузетно значајну улогу у историји развоја животињског света, јер је то прва група кичмењака која је у потпуности изашла на копно. Ова еволуција омогућена је захваљујући развитку јаја са амнионом: опна (амнион) је обавијала ембрион који се налазио у течној средини, па је ембрион могао да се развија лебдећи у течности, а није било потребно да се јаја полажу у води. Рептили су тетраподна животињска класа која се састоји од корњача, крокодила, змија, водених гуштера, гуштера, туатара, и њихових изумрлих сродника. Изучавање тих традиционалних рептилских редова, историјски комбинованих са модерним водоземцима, се назива херпетологија. Пошто су неки рептили сроднији са птицама него са другима рептилима (нпр., крокодили су сроднији са птицама него са гуштерима), традиционалне групе „рептила” које су горе наведене не сачињавају монофилетску групу (или кладу). Из тог разлога, многи модерни научници преферирају да уврсте и птице као део рептила, чиме Reptilia постаје монофилетска класа.[1][2][3][4] Најранији познати проторептили су се појавили пре око 312 милиона година током карбонског периода, тако што су еволуирали из напредних рептилиоморфних тетрапода који су почели да се у све већој мери адаптирају на живот на сувом тлу. Неки рани примери обухватају гуштерима сличне Hylonomus и Casineria. Осим садашњих рептила, постојало је мноштво различитих група које су сад изумрле, део којих је изумро услед масовних изумирања. Посебно је значајно кредно-терцијарно изумирање услед кога су нестали птеросаури, плесиосаури, Ornithischia, и сауроподи, као и многе тероподне врсте, укључујући трудонтиде, дромеосауриде, тираносауриде, и абелисауриде, заједно са многим припадницима кладе Crocodyliformes, и реда љускаша (нпр. мосасаури). Модерни неавијански рептили насељавају све континенте изузев Антарктика. (Ако се птице класификују као рептили, онда су сви континенти насељени рептилима.) Неколико постојећих подгрупа је препознато: корњаче (Testudines и Testudinidae), око 400 врста;[5] Rhynchocephalia (туатара са Новог Зеланда), 1 врста;[5][6] Squamata (гуштери, змије, и Amphisbaenia), преко 9.600 врста;[5] Crocodilia (крокодили, гавијали, кајмани, и алигатори), 25 врста;[5] и Aves (птице), 10.000 врста.[5] Рептили су тетраподни кичмењаци, створења која било имају четири уда или су, попут змија, проистекли из предака са четири уда. За разлику од водоземаца, рептили немају акватични стадијум ларве. Већина рептила носи јаја, мада је неколико врста Squamata вивипарна, као што су биле и неке од изумрлих акватичних клада[7] — фетус се развије унутар мајке, у постељици уместо у кори јајета. Код амниота, јаја су окружена мембранама ради заштите и транспорта. Постојање мембране омогућава репродукцију на копну. Многе вивипарне врсте хране своје фетусе путем разних форми постељица, које су аналогне оним код сисара. Неке врсте се иницијално старају о својим младунцима. Изумрли рептили су у опсегу величина од малог гека, Sphaerodactylus ariasae, који може да нарасте до 17 mm (0,7 in), до естуарских крокодила, Crocodylus porosus, који могу да досегну дужину од 6 m и тежину од преко 1000 kg. Опште особине[уреди | уреди извор] Гмизавци су животиње чија телесна температура зависи од температуре околине. Са падом температуре спољашње средине, пада и њихова телесна температура. Зато се често могу видети како се сунчају. На тај начин се греју. Ноћу мирују на скровитом месту. Када у јесен захлади, закопавају се у земљу и падају у зимски сан све до пролећа. Због тога су у неповољном положају у оним областима где облачно и хладно време умањује такве могућности. То је разлог што гмизавци углавном пребивају у топлијим крајевима. Релативно мали број врста настањује пределе велике географске ширине. Тело им је заштићено рожним крљуштима (код неких група, то су плоче), које их штите од губитка течности. На прстима имају канџице, које олакшавају кретање по копну, такође од рожне материје. То је, наиме материја, која се среће у различитим органима, још и код птица и сисара, што еволутивно повезује све три класе. Наука која се бави гмизавцима назива се херпетологија. Развојна историја[уреди | уреди извор] Гмизавци су се појавили средином карбона, а развили су се из водоземаца. Разликовали су се од водоземаца првенствено по амниотском јајету с љуском која служи за заштиту од исушивања, што им је омогућило да у потпуности воде копнени живот, за разлику од водоземаца. То се показало великом предношћу јер су тадашња мора била пуна опасних грабљивица. Остали копнени кичмењаци се према том обележју називају амниотима. За разлику од водоземаца, амниоти више нису везани у размножавању за воду, а и уопштено су боље прилагођени животу у сувој околини. Амниоти се раздвајају на две гране које се разликују према броју бочних отвора на лобањи у пределу сљепоочнице (темпорални отвор). Амниоти с једним бочним отвором називају се синапсида (један отвор), а с два диапсида. Праамниоти нису имали ниједан отвор, па их се назива анапсида. Од диапсида потичу диносаури као и данас изумрли птеросаури. Према најновијим сазнањима, као једини и данас живи представници диносаура сматрају се птице. До данас није недвосмислено утврђено место које у систематици припада корњачама. Њихова лобања нема бочних отвора, па се због тога ова група сврстава у анапсиде. Неки палеонтолози сматрају, да су се корњаче развиле од диапсида које су накнадно редуковале ове отворе. Према положају њихове вратне артерије и постојању аорте, данас се сврставају у гмизавце као сестринска група. Но до сад нађени фосили не омогућују дефинитивно објашњење. Разноврсност гмизаваца[уреди | уреди извор] Таксономија[уреди | уреди извор] Види још: Класификација гмизаваца и Класификација змија Класификација гмизаваца по Бентону, 2014.[8][9] Класа Reptilia †Поткласа Parareptilia †Ред Pareiasauromorpha Поткласа Eureptilia Инфракласа Diapsida †Ред Younginiformes Инфракласа Neodiapsida Ред Testudinata (корњаче) Инфракласа Lepidosauromorpha Неименована инфрапоткласа †Инфракласа Ichthyosauria †Ред Thalattosauria Надред Lepidosauriformes Ред Rhynchocephalia Ред Squamata (гуштери & змије) †Инфракласа Sauropterygia †Ред Placodontia †Ред Eosauropterygia †Ред Plesiosauria Инфракласа Archosauromorpha †Ред Rhynchosauria †Ред Protorosauria †Ред Phytosauria Подела Archosauriformes Потподела Archosauria Надред Crocodylomorpha Ред Crocodilia Инфраподела Avemetatarsalia Инфрапотподела Ornithodira †Ред Pterosauria Надред Dinosauria Ред Saurischia (садржи кладу Aves) †Ред Ornithischia Филогенија[уреди | уреди извор] Кладограм који је овде представљен илуструје „породично стабло” рептила, и следи поједностављену верзију односа коју је објавио M.S. Lee 2013. године[10] Све генетичке студије су подржале хипотезу да су корњаче диапсиди; неки стављају корњаче међу Archosauriformes,[10][11][12][13][14][15] док по неким радовима оне спадају у Lepidosauromorpha.[16] Приказани кладограм користи комбинацију генетичких (молекуларних) и фосилних (морфолошких) података за успостављање односа.[10] Amniota Synapsida (сисари и њихови изумрли сродници) Целокупна група Reptilia †Parareptilia †Millerettidae unnamed †Eunotosaurus †Hallucicrania †Lanthanosuchidae †Procolophonia †Procolophonoidea †Pareiasauromorpha Eureptilia †Captorhinidae Romeriida †Paleothyris Diapsida †Araeoscelidia Neodiapsida †Claudiosaurus †Younginiformes Крунска група Reptilia Lepidosauromorpha †Kuehneosauridae Lepidosauria Rhynchocephalia (туатаре и њихови изумрли сродници) Squamata (гуштери и змије) Archosauromorpha †Choristodera †Prolacertiformes †{{Trilophosaurus}} †Rhynchosauria Archosauriformes (крокодили, птице, диносауруси и изумрли преци) Pantestudines †Eosauropterygia †Placodontia †Sinosaurosphargis †Odontochelys Testudinata †Proganochelys Testudines (корњаче) Гуштери[уреди | уреди извор] Тело гуштера прекривено је рожним крљуштима које су поређане као црепови на крову. Повремено се рожни слој одбацује у парчићима и ствара се нови. Гуштери имају кратке ноге са пет дугачких прстију који се завршавају оштрим канџама. Њима се гуштер придржава док се вере уз дрво или камен. У устима гуштери имају много зубића. Њима само придржавају храну, пошто они гутају цео плен. Ове животиње врло добро виде и чују. Велики значај за њихово сналажење у простору има посебно чуло мириса. Хемијске материје се дугим рачвастим језиком допремају до тог чула, које се налази испод носних органа. Гуштери немају сталну температуру тела (зависи од температуре спољашње средине). Када су у опасности, одбацују свој реп. И док збуњени нападач остане са парчетом репа, гуштер се спасава бекством. Касније му израсте нови реп. У нашим крајевима чести су ливадски и зидни гуштер. Има их готово на сваком кораку, па и у људским насељима. Чести су и гуштери зелембаћи. Мужјаци су обично живљих боја од женки. Змије[уреди | уреди извор] Наше најпознатије неотровне змије су белоушка и смук. Белоушку је лако препознати по шарама иза главе. Она живи поред воде. Смукови живе на ливадама и у проређеним шумама. Отровне змије наших крајева су шарка и поскок. Поскок се може препознати по једном израштају - рошчићу на врху њушке. Живи на каменитим местима. Шарка свој назив није добила по `цикцак шари`. Змије имају дуго ваљкасто тело без ногу, па их је лако препознати. Крећу се вијугањем тела помоћу снажних мишића. За разлику од гуштера, свој рожни слој одбацују цео одједанпут. `Пресвлаче` се из своје коже и остављају змијску кошуљицу. Очни капци змија су срасли и провидни. Отуда хладан змијски поглед. Због тога змије слабо виде. Змије имају дуг рачвасти језик. Као и гуштери, и оне језиком уносе хемијске материје из спољашње средине до посебног чула мириса. Све змије су грабљивице. Хране се разним другим животињама: мишевима птицама гуштерима жабама рибама инсектима другим змијама Могу да прогутају веома крупан плен. Неке врсте змија имају отровне жлезде које се изливају на врху два дуга зуба. Помоћу тих зуба змија убија плен, али се и брани од непријатеља. Неке змије свој плен убијају тако што се обавију око њега и удаве га снажним мишићима. Те змије се зову удави. Змије су најчешће таквих боја да се тешко могу разазнати од своје околине. Али неке од њих имају и јарке боје. Обично су отровне змије јарких боја или имају упадљиве шаре. Међутим, има и оних које бојом имитирају опасну змију. Већина живи на копну. Сакривају се у трави, жбуњу, под камењем, неке живе и на дрвећу. А има и водених змија (слатководне и морске). Како разликовати отровне од неотровних змија наших крајева[уреди | уреди извор] Отровне змије је лако препознати. Разлике између отровних и неотровних змија можете видети у следећој табели. ОТРОВНЕ НЕОТРОВНЕ ГЛАВА троугласта јајаста ВРАТ наглашен ненаглашен ТЕЛО кратко, здепасто дуго, витко ОБОЈЕНОСТ са шарама најчешће без шара Корњаче[уреди | уреди извор] Корњача Корњаче немају зубе. Њихове вилице су обложене рожном навлаком која им омогућује да откидају плен. Живе на копну, у слатким водама и у морима. Копнене се углавном хране сочним биљним деловима, мада радо једу и мање животиње (глисте и пужеве). Водене корњаче су месоједи. Све корњаче полажу јаја на копну. У нашим крајевима живе шумска и барска корњача. Најмање корњаче не нарасту више од 11 cm, а највеће могу да имају преко 2 м и да буду тешке око 500 kg. Највећа је зелена корњача или голема желва, која живи у топлим морима. Највеће копнене корњаче живе на неким острвима Индијског океана и на острву Галапагос. Ове џиновске корњаче често су дуже од 1,5 м и тешке око 270 kg. Крокодили[уреди | уреди извор] Крокодил Тело крокодила прекривено је великим рожним плочама. Крокодили имају дугачак пљоснат реп, који им служи за пливање, и издужене вилице у којима се налазе бројни шиљати зуби. Крокодили живе у слатким водама топлијих крајева. Добри су пливачи и велике грабљивице. Највише лове рибе, али нападају и друге животиње, понекад и човека. Када крокодили мирују и вребају плен, из воде им вире само очи и носни отвори. Код крокодила се први пут јавља потпуно преграђено срце(две коморе и две преткоморе), што значи да имају сталну телесну температуру. Крокодили су данас највећи гмизавци. Њихова величина се креће од 1 до 10 м. Највећи је индомалајски крокодил. Изумрли гмизавци[уреди | уреди извор] Некада их је на Земљи живело много различитих врста гмизаваца. Међу њима су били и диносауруси. Неки гмизавци су били мали, величине гуштера, а неки - прави џинови. Највећи међу њима био је дуг 25 m и тежак 50 тона. То је највећа копнена животиња која је икада живела на Земљи. Изумрли гмизавци су се и по изгледу веома разликовали. Неки су се кретали на четири, а неки на две ноге, неки су имали крила и могли да лете, док су неки подсећали на рибе и живели у води. Било је и биљоједа и месождера. Велики број гмизаваца ишчезао је за кратко време. Занимљивости[уреди | уреди извор] Најмањи гуштер има само 1,5 cm, а највећи (варан) дужи је од 3 м. Код нас у најмањи мацаклини (гекони), дуги 8-10 cm, а највећи је блавор, који може да буде и дужи од 1 м. Блавор Слепић Немају сви гуштери добро развијене ноге. Код неких су добро развијене ноге. Код неких су мале и танке, па су они спори. Али када су у опасности, они подигну своје ножице и `пливају` по сувом јер су тако много бржи. А неки гуштери немају ноге, па подсећају на змије. Такви су блавор и слепић. Неки гуштери су необичног облика. Имају дугачак савитљив реп помоћу којег се придржавају за гране. То су камелеони. Свако око камелеона покреће се самостално. Тако они истовремено могу да гледају у различитим правцима. По боји тела слични су средини у којој живе, али боју свога тела могу и да мењају. Змије су дугачке од 15 cm до 11,5 м. Највећа змија је анаконда (на слици), која живи у прашумама Јужне Америке. А највећа змија наших крајева је четворопругасти смук, који може да буде дужи од 2 м. Највећа отровница је царска кобра - дугачка је 5,5 м. Гуштери су већином мирне животиње, које уједају да би се одбраниле. Само две врсте имају отровне жлезде. Њихов ујед је врло опасан, па и смртоносан за човека. Те две врсте живе у јужном делу Северне Америке. Змије дуго живе. Чак и мале змије могу да живе до 12 година, а многе живе и дуже од 40 година. Најдужи отровни зуб (5 cm) има габонска отровница. Отров шарке је толико јак да се његово дејство продужава и када се он осуши. Због тога није препоручљиво ићи бос по терену где се може наћи шарка или додиривати зубе већ мртве змије. Змијски цар је животиња која најдуже може да гладује. Он може да издржи и 1400 дана без хране. Изградња све већег броја асфалтних путева један је од фактора који угрожавају гмизавце. Како асфалт упија сунчеву топлоту, представља погодно место на коме гмизавци могу повисити температуру свога тела. Али овим путевима пролази и све већи број аутомобила, те многи од њих на овим местима бивају прегажени.

Prikaži sve...
990RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Matematika (lat. [ars] mathematica < grč. μαϑηματιϰὴ [τέχνη]: matematičko [umijeće], prema μάϑημα: nauk; znanje),[3] je nauka koja izučava prirodu koristeći logiku.[4] Izučavane strukture najčešće potiču iz drugih prirodnih nauka, najčešće fizike, ali neke od struktura su definisane i izučavane radi internih razloga.[5][6][7] Istorijski, matematika se razvila iz potrebe da se obavljaju proračuni u trgovini, vrše mjerenja zemljišta i predviđaju astronomski događaji, i ove tri primjene se mogu dovesti u vezu sa grubom podjelom matematike u izučavanje strukture, prostora i izmjena.[8] Izučavanje strukture počinje sa brojevima, u početku sa prirodnim brojevima i cijelim brojevima.[9] Osnovna pravila za aritmetičke operacije su definisana u osnovnoj algebri a dodatna svojstva cijelih brojeva se izučavaju u teoriji brojeva. Izučavanje metoda za rješavanje jednačina je dovelo do razvoja apstraktne algebre koja između ostalog izučava prstenove i polja, strukture koje generalizuju osobine koje posjeduju brojevi.[10] Fizikalno važan koncept vektora se izučava u linearnoj algebri. Izučavanje prostora je počelo sa geometrijom, prvo Euklidovom geometrijom i trigonometrijom u pojmljivom trodimenzionalnom prostoru, ali se kasnije proširila na neeuklidske geometrije koje imaju centralnu ulogu u opštoj relativnosti. Moderna polja geometrije su diferencijalna geometrija i algebarska geometrija. Teorija grupa izučava koncept simetrije, i predstavlja vezu u u izučavanju prostora i strukture. Topologija povezuje izučavanje prostora i izmjene fokusirajući se na koncept kontinuiteta. Razumjevanje i opisivanje izmjena mjerljivih varijabli je glavna značajka prirodnih nauka, i diferencijalni račun je razvijen u te svrhe.[11] Centralni koncept kojim se opisuje promjena varijable je funkcija. Mnogi prirodni problemi su vodili uspostavljanju veze između vrijednosti i količine izmjene, i metodi razvijeni pri tome, se izučavaju u diferencijalnim jednačinama. Brojevi koji predstavljaju kontinualne veličine su realni brojevi, i detaljno izučavanje njihovih svojstava i funkcija je predmet analize. Zbog matematskih razloga, uveden je koncept kompleksnih brojeva koji se izučavaju u kompleksnoj analizi. Funkcionalna analiza je skoncetrisana na n-dimenzionalne prostore funkcija postavljajući time osnovu za izučavanje kvantne mehanike.[12] Radi pojašnjavanja i izučavanja osnova matematike, razvijene su oblasti teorija skupova, matematička logika i teorija modela. Važna oblast primjenjene matematike je vjerovatnoća i statistika koja se bavi izučavanjem i predviđanjem slučajnosti i slučajnih pojava. Numerička analiza izučava numeričke metode izračunavanja a diskretna matematika je zajedničko ime za oblasti matematike koje se koriste u računarskim naukama.

Prikaži sve...
1,390RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Matematika (lat. [ars] mathematica < grč. μαϑηματιϰὴ [τέχνη]: matematičko [umijeće], prema μάϑημα: nauk; znanje),[3] je nauka koja izučava prirodu koristeći logiku.[4] Izučavane strukture najčešće potiču iz drugih prirodnih nauka, najčešće fizike, ali neke od struktura su definisane i izučavane radi internih razloga.[5][6][7] Istorijski, matematika se razvila iz potrebe da se obavljaju proračuni u trgovini, vrše mjerenja zemljišta i predviđaju astronomski događaji, i ove tri primjene se mogu dovesti u vezu sa grubom podjelom matematike u izučavanje strukture, prostora i izmjena.[8] Izučavanje strukture počinje sa brojevima, u početku sa prirodnim brojevima i cijelim brojevima.[9] Osnovna pravila za aritmetičke operacije su definisana u osnovnoj algebri a dodatna svojstva cijelih brojeva se izučavaju u teoriji brojeva. Izučavanje metoda za rješavanje jednačina je dovelo do razvoja apstraktne algebre koja između ostalog izučava prstenove i polja, strukture koje generalizuju osobine koje posjeduju brojevi.[10] Fizikalno važan koncept vektora se izučava u linearnoj algebri. Izučavanje prostora je počelo sa geometrijom, prvo Euklidovom geometrijom i trigonometrijom u pojmljivom trodimenzionalnom prostoru, ali se kasnije proširila na neeuklidske geometrije koje imaju centralnu ulogu u opštoj relativnosti. Moderna polja geometrije su diferencijalna geometrija i algebarska geometrija. Teorija grupa izučava koncept simetrije, i predstavlja vezu u u izučavanju prostora i strukture. Topologija povezuje izučavanje prostora i izmjene fokusirajući se na koncept kontinuiteta. Razumjevanje i opisivanje izmjena mjerljivih varijabli je glavna značajka prirodnih nauka, i diferencijalni račun je razvijen u te svrhe.[11] Centralni koncept kojim se opisuje promjena varijable je funkcija. Mnogi prirodni problemi su vodili uspostavljanju veze između vrijednosti i količine izmjene, i metodi razvijeni pri tome, se izučavaju u diferencijalnim jednačinama. Brojevi koji predstavljaju kontinualne veličine su realni brojevi, i detaljno izučavanje njihovih svojstava i funkcija je predmet analize. Zbog matematskih razloga, uveden je koncept kompleksnih brojeva koji se izučavaju u kompleksnoj analizi. Funkcionalna analiza je skoncetrisana na n-dimenzionalne prostore funkcija postavljajući time osnovu za izučavanje kvantne mehanike.[12] Radi pojašnjavanja i izučavanja osnova matematike, razvijene su oblasti teorija skupova, matematička logika i teorija modela. Važna oblast primjenjene matematike je vjerovatnoća i statistika koja se bavi izučavanjem i predviđanjem slučajnosti i slučajnih pojava. Numerička analiza izučava numeričke metode izračunavanja a diskretna matematika je zajedničko ime za oblasti matematike koje se koriste u računarskim naukama....

Prikaži sve...
1,490RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Matematika (lat. [ars] mathematica < grč. μαϑηματιϰὴ [τέχνη]: matematičko [umijeće], prema μάϑημα: nauk; znanje),[3] je nauka koja izučava prirodu koristeći logiku.[4] Izučavane strukture najčešće potiču iz drugih prirodnih nauka, najčešće fizike, ali neke od struktura su definisane i izučavane radi internih razloga.[5][6][7] Istorijski, matematika se razvila iz potrebe da se obavljaju proračuni u trgovini, vrše mjerenja zemljišta i predviđaju astronomski događaji, i ove tri primjene se mogu dovesti u vezu sa grubom podjelom matematike u izučavanje strukture, prostora i izmjena.[8] Izučavanje strukture počinje sa brojevima, u početku sa prirodnim brojevima i cijelim brojevima.[9] Osnovna pravila za aritmetičke operacije su definisana u osnovnoj algebri a dodatna svojstva cijelih brojeva se izučavaju u teoriji brojeva. Izučavanje metoda za rješavanje jednačina je dovelo do razvoja apstraktne algebre koja između ostalog izučava prstenove i polja, strukture koje generalizuju osobine koje posjeduju brojevi.[10] Fizikalno važan koncept vektora se izučava u linearnoj algebri. Izučavanje prostora je počelo sa geometrijom, prvo Euklidovom geometrijom i trigonometrijom u pojmljivom trodimenzionalnom prostoru, ali se kasnije proširila na neeuklidske geometrije koje imaju centralnu ulogu u opštoj relativnosti. Moderna polja geometrije su diferencijalna geometrija i algebarska geometrija. Teorija grupa izučava koncept simetrije, i predstavlja vezu u u izučavanju prostora i strukture. Topologija povezuje izučavanje prostora i izmjene fokusirajući se na koncept kontinuiteta. Razumjevanje i opisivanje izmjena mjerljivih varijabli je glavna značajka prirodnih nauka, i diferencijalni račun je razvijen u te svrhe.[11] Centralni koncept kojim se opisuje promjena varijable je funkcija. Mnogi prirodni problemi su vodili uspostavljanju veze između vrijednosti i količine izmjene, i metodi razvijeni pri tome, se izučavaju u diferencijalnim jednačinama. Brojevi koji predstavljaju kontinualne veličine su realni brojevi, i detaljno izučavanje njihovih svojstava i funkcija je predmet analize. Zbog matematskih razloga, uveden je koncept kompleksnih brojeva koji se izučavaju u kompleksnoj analizi. Funkcionalna analiza je skoncetrisana na n-dimenzionalne prostore funkcija postavljajući time osnovu za izučavanje kvantne mehanike.[12] Radi pojašnjavanja i izučavanja osnova matematike, razvijene su oblasti teorija skupova, matematička logika i teorija modela. Važna oblast primjenjene matematike je vjerovatnoća i statistika koja se bavi izučavanjem i predviđanjem slučajnosti i slučajnih pojava. Numerička analiza izučava numeričke metode izračunavanja a diskretna matematika je zajedničko ime za oblasti matematike koje se koriste u računarskim naukama....

Prikaži sve...
990RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Razumevanje sistema numeracije Matematika (lat. [ars] mathematica < grč. μαϑηματιϰὴ [τέχνη]: matematičko [umijeće], prema μάϑημα: nauk; znanje),[3] je nauka koja izučava prirodu koristeći logiku.[4] Izučavane strukture najčešće potiču iz drugih prirodnih nauka, najčešće fizike, ali neke od struktura su definisane i izučavane radi internih razloga.[5][6][7] Istorijski, matematika se razvila iz potrebe da se obavljaju proračuni u trgovini, vrše mjerenja zemljišta i predviđaju astronomski događaji, i ove tri primjene se mogu dovesti u vezu sa grubom podjelom matematike u izučavanje strukture, prostora i izmjena.[8] Izučavanje strukture počinje sa brojevima, u početku sa prirodnim brojevima i cijelim brojevima.[9] Osnovna pravila za aritmetičke operacije su definisana u osnovnoj algebri a dodatna svojstva cijelih brojeva se izučavaju u teoriji brojeva. Izučavanje metoda za rješavanje jednačina je dovelo do razvoja apstraktne algebre koja između ostalog izučava prstenove i polja, strukture koje generalizuju osobine koje posjeduju brojevi.[10] Fizikalno važan koncept vektora se izučava u linearnoj algebri. Izučavanje prostora je počelo sa geometrijom, prvo Euklidovom geometrijom i trigonometrijom u pojmljivom trodimenzionalnom prostoru, ali se kasnije proširila na neeuklidske geometrije koje imaju centralnu ulogu u opštoj relativnosti. Moderna polja geometrije su diferencijalna geometrija i algebarska geometrija. Teorija grupa izučava koncept simetrije, i predstavlja vezu u u izučavanju prostora i strukture. Topologija povezuje izučavanje prostora i izmjene fokusirajući se na koncept kontinuiteta. Razumjevanje i opisivanje izmjena mjerljivih varijabli je glavna značajka prirodnih nauka, i diferencijalni račun je razvijen u te svrhe.[11] Centralni koncept kojim se opisuje promjena varijable je funkcija. Mnogi prirodni problemi su vodili uspostavljanju veze između vrijednosti i količine izmjene, i metodi razvijeni pri tome, se izučavaju u diferencijalnim jednačinama. Brojevi koji predstavljaju kontinualne veličine su realni brojevi, i detaljno izučavanje njihovih svojstava i funkcija je predmet analize. Zbog matematskih razloga, uveden je koncept kompleksnih brojeva koji se izučavaju u kompleksnoj analizi. Funkcionalna analiza je skoncetrisana na n-dimenzionalne prostore funkcija postavljajući time osnovu za izučavanje kvantne mehanike.[12] Radi pojašnjavanja i izučavanja osnova matematike, razvijene su oblasti teorija skupova, matematička logika i teorija modela. Važna oblast primjenjene matematike je vjerovatnoća i statistika koja se bavi izučavanjem i predviđanjem slučajnosti i slučajnih pojava. Numerička analiza izučava numeričke metode izračunavanja a diskretna matematika je zajedničko ime za oblasti matematike koje se koriste u računarskim naukama....

Prikaži sve...
1,290RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! The New Mathematics Dictionary and Handbook - Robert W. Marks Matematika (lat. [ars] mathematica < grč. μαϑηματιϰὴ [τέχνη]: matematičko [umijeće], prema μάϑημα: nauk; znanje),[3] je nauka koja izučava prirodu koristeći logiku.[4] Izučavane strukture najčešće potiču iz drugih prirodnih nauka, najčešće fizike, ali neke od struktura su definisane i izučavane radi internih razloga.[5][6][7] Istorijski, matematika se razvila iz potrebe da se obavljaju proračuni u trgovini, vrše mjerenja zemljišta i predviđaju astronomski događaji, i ove tri primjene se mogu dovesti u vezu sa grubom podjelom matematike u izučavanje strukture, prostora i izmjena.[8] Izučavanje strukture počinje sa brojevima, u početku sa prirodnim brojevima i cijelim brojevima.[9] Osnovna pravila za aritmetičke operacije su definisana u osnovnoj algebri a dodatna svojstva cijelih brojeva se izučavaju u teoriji brojeva. Izučavanje metoda za rješavanje jednačina je dovelo do razvoja apstraktne algebre koja između ostalog izučava prstenove i polja, strukture koje generalizuju osobine koje posjeduju brojevi.[10] Fizikalno važan koncept vektora se izučava u linearnoj algebri. Izučavanje prostora je počelo sa geometrijom, prvo Euklidovom geometrijom i trigonometrijom u pojmljivom trodimenzionalnom prostoru, ali se kasnije proširila na neeuklidske geometrije koje imaju centralnu ulogu u opštoj relativnosti. Moderna polja geometrije su diferencijalna geometrija i algebarska geometrija. Teorija grupa izučava koncept simetrije, i predstavlja vezu u u izučavanju prostora i strukture. Topologija povezuje izučavanje prostora i izmjene fokusirajući se na koncept kontinuiteta. Razumjevanje i opisivanje izmjena mjerljivih varijabli je glavna značajka prirodnih nauka, i diferencijalni račun je razvijen u te svrhe.[11] Centralni koncept kojim se opisuje promjena varijable je funkcija. Mnogi prirodni problemi su vodili uspostavljanju veze između vrijednosti i količine izmjene, i metodi razvijeni pri tome, se izučavaju u diferencijalnim jednačinama. Brojevi koji predstavljaju kontinualne veličine su realni brojevi, i detaljno izučavanje njihovih svojstava i funkcija je predmet analize. Zbog matematskih razloga, uveden je koncept kompleksnih brojeva koji se izučavaju u kompleksnoj analizi. Funkcionalna analiza je skoncetrisana na n-dimenzionalne prostore funkcija postavljajući time osnovu za izučavanje kvantne mehanike.[12] Radi pojašnjavanja i izučavanja osnova matematike, razvijene su oblasti teorija skupova, matematička logika i teorija modela. Važna oblast primjenjene matematike je vjerovatnoća i statistika koja se bavi izučavanjem i predviđanjem slučajnosti i slučajnih pojava. Numerička analiza izučava numeričke metode izračunavanja a diskretna matematika je zajedničko ime za oblasti matematike koje se koriste u računarskim naukama....

Prikaži sve...
990RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Matematika (lat. [ars] mathematica < grč. μαϑηματιϰὴ [τέχνη]: matematičko [umijeće], prema μάϑημα: nauk; znanje),[3] je nauka koja izučava prirodu koristeći logiku.[4] Izučavane strukture najčešće potiču iz drugih prirodnih nauka, najčešće fizike, ali neke od struktura su definisane i izučavane radi internih razloga.[5][6][7] Istorijski, matematika se razvila iz potrebe da se obavljaju proračuni u trgovini, vrše mjerenja zemljišta i predviđaju astronomski događaji, i ove tri primjene se mogu dovesti u vezu sa grubom podjelom matematike u izučavanje strukture, prostora i izmjena.[8] Izučavanje strukture počinje sa brojevima, u početku sa prirodnim brojevima i cijelim brojevima.[9] Osnovna pravila za aritmetičke operacije su definisana u osnovnoj algebri a dodatna svojstva cijelih brojeva se izučavaju u teoriji brojeva. Izučavanje metoda za rješavanje jednačina je dovelo do razvoja apstraktne algebre koja između ostalog izučava prstenove i polja, strukture koje generalizuju osobine koje posjeduju brojevi.[10] Fizikalno važan koncept vektora se izučava u linearnoj algebri. Izučavanje prostora je počelo sa geometrijom, prvo Euklidovom geometrijom i trigonometrijom u pojmljivom trodimenzionalnom prostoru, ali se kasnije proširila na neeuklidske geometrije koje imaju centralnu ulogu u opštoj relativnosti. Moderna polja geometrije su diferencijalna geometrija i algebarska geometrija. Teorija grupa izučava koncept simetrije, i predstavlja vezu u u izučavanju prostora i strukture. Topologija povezuje izučavanje prostora i izmjene fokusirajući se na koncept kontinuiteta. Razumjevanje i opisivanje izmjena mjerljivih varijabli je glavna značajka prirodnih nauka, i diferencijalni račun je razvijen u te svrhe.[11] Centralni koncept kojim se opisuje promjena varijable je funkcija. Mnogi prirodni problemi su vodili uspostavljanju veze između vrijednosti i količine izmjene, i metodi razvijeni pri tome, se izučavaju u diferencijalnim jednačinama. Brojevi koji predstavljaju kontinualne veličine su realni brojevi, i detaljno izučavanje njihovih svojstava i funkcija je predmet analize. Zbog matematskih razloga, uveden je koncept kompleksnih brojeva koji se izučavaju u kompleksnoj analizi. Funkcionalna analiza je skoncetrisana na n-dimenzionalne prostore funkcija postavljajući time osnovu za izučavanje kvantne mehanike.[12] Radi pojašnjavanja i izučavanja osnova matematike, razvijene su oblasti teorija skupova, matematička logika i teorija modela. Važna oblast primjenjene matematike je vjerovatnoća i statistika koja se bavi izučavanjem i predviđanjem slučajnosti i slučajnih pojava. Numerička analiza izučava numeričke metode izračunavanja a diskretna matematika je zajedničko ime za oblasti matematike koje se koriste u računarskim naukama....

Prikaži sve...
1,490RSD
forward
forward
Detaljnije

Izdanje Zorana Živkovića u saradnji s Informatikom, Beograd Prevod: Zoran Živković Povez: tvrd sa omotom Broj strana: 216 Ilustrovano. Odlično očuvana. Kao i mnoge njegove kolege teoretičari fizike, Stiven Hoking nastoji da se domogne svetog grala nauke – neuhvatljive Teorije Svega koja počiva u samom srcu kosmosa. Svojim pristupačnim i često lepršavim stilom on nam pomaže da proniknemo u tajne kosmosa – od supergravitacije do supersimetrije, od kvantne teorije do M-teorije, od holografije do dvojnosti. U njegovoj pratnji stižemo do još neukroćenih međa nauke gde teorija superstruna i p-brana možda sadrži konačni ključ zagonetke. Kosmos u orahovoj ljusci je raskošno ilustrovana knjiga u kojoj se izlaže priča o napretku u fizici ostvarenom posle pojave Hokingovog prvog znamenitog dela. Takođe, Hoking nam omogućava da zavirimo iza pozornice jedne od najuzbudljivijih intelektualnih pustolovina – nastojanja „da se povežu Ajnštajnova opšta teorija relativnosti i zamisli Ričarda Fejnmena o višestrukim istorijama u celovitu objedinjenu teoriju koja bi opisala sve što se događa u kosmosu“. Obilje ilustracija u boji pomaže da se predeli kojima se krećemo predoče kao nadrealna zemlja čuda u kojoj se čestice, listovi i strune kreću kroz jedanaest dimenzija; gde crne rupe isparavaju i iščezavaju, odnoseći sa sobom svoje tajne; i gde je prvobitno kosmičko seme iz koga je iznikao naš kosmos bilo tek majušni orah. (K-98)

Prikaži sve...
1,780RSD
forward
forward
Detaljnije

Biljke planina Bosne i Hercegovine / Dubravka Šoljan, Edina Muratović, Sabaheta Abadžić Sarajevo / Zagreb 2009. Mek povez, bogato ilustrovano, 453 strana. Knjiga je nekorišćena (nova). Koncept knjige je prilagođen širem krugu korisnika, prvenstveno ljubiteljima planina, koji moraju imati potrebno botaničko obrazovanje, ali imaju i želju da znaju kako se koja biljka zove, koju ima upotrebnu vrijednost, gdje raste, koliko je široko rasprostranjena itd. Ova vrsta interesa može se zadovoljiti ukoliko se iskoriste fotografije biljaka napravljene u vrijeme njihovog cvjetanja, zatim, da se rasporede u skupine jednake boje cvjetova i da se svakoj fotografiji pridruži kratak tekst i neophodni numerički podaci koji će doprinijeti sigurnosti u određivanju nepoznate vrste. Na ovaj način odabrano je 400 vrsta iz skupine skrivenosjemenjača, uglavnom zeljastih, te manji broj drvenastih biljaka, a koje su botanički svrstane u 61 porodicu (familiju). U završnom dijelu knjige nalaze se poglavlja: Literatura i Registar naziva biljaka, domaći, latinski, engleski. Engleski nazivi biljaka kao i poglavlja: Predgovor i Uvod, napisani na engleskom jeziku, omogućit će strancima koji žive i rade u BiH, ili dolaze kao turisti, te posjećuju naše planine i zanimaju se za biljni svijet, da ovu knjigu uspješno koriste. Knjiga će biti od velike koristi studentima biologije, farmacije, šumarstva i agronomije.

Prikaži sve...
1,700RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Biljke planina Bosne i Hercegovine / Dubravka Šoljan, Edina Muratović, Sabaheta Abadžić Sarajevo / Zagreb 2009. Mek povez, bogato ilustrovano, 453 strana. Koncept knjige je prilagođen širem krugu korisnika, prvenstveno ljubiteljima planina, koji moraju imati potrebno botaničko obrazovanje, ali imaju i želju da znaju kako se koja biljka zove, koju ima upotrebnu vrijednost, gdje raste, koliko je široko rasprostranjena itd. Ova vrsta interesa može se zadovoljiti ukoliko se iskoriste fotografije biljaka napravljene u vrijeme njihovog cvjetanja, zatim, da se rasporede u skupine jednake boje cvjetova i da se svakoj fotografiji pridruži kratak tekst i neophodni numerički podaci koji će doprinijeti sigurnosti u određivanju nepoznate vrste. Na ovaj način odabrano je 400 vrsta iz skupine skrivenosjemenjača, uglavnom zeljastih, te manji broj drvenastih biljaka, a koje su botanički svrstane u 61 porodicu (familiju). U završnom dijelu knjige nalaze se poglavlja: Literatura i Registar naziva biljaka, domaći, latinski, engleski. Engleski nazivi biljaka kao i poglavlja: Predgovor i Uvod, napisani na engleskom jeziku, omogućit će strancima koji žive i rade u BiH, ili dolaze kao turisti, te posjećuju naše planine i zanimaju se za biljni svijet, da ovu knjigu uspješno koriste. Knjiga će biti od velike koristi studentima biologije, farmacije, šumarstva i agronomije.

Prikaži sve...
2,390RSD
forward
forward
Detaljnije

Историја математике је свима јасна научна дисциплина. Зна се о чему се ради и на шта се односи. Спор би могао настати око тога да ли она спада у историјске или математичке дисциплине. Какав год став да неко заступа, био би у праву, јер се компетентно могу бранити обе позиције. Пракса је, међутим, пресудила у корист математике. Околност да се историјом математике баве математичари а не историчари сврстала је историју математике у математичке дисциплине. Што се филозофије математике тиче, питање је отворено чак и пред стручњацима за дисциплину. И то не само што се тиче класификације. Класификација чак није особито значајна, јер су се филозофијом математике, данас поготово, а и раније, бавили математичари и филозофи те је обе дисциплине с правом могу присвајати. То је и корисно будући да подстиче њен развој. Спор је у дефиницији у екстензионалном смислу, односно у обиму дисциплине. Најшире речено - тада се најмање греши, али се оставља велики простор за спорове - филозофија математике се бави филозофским питањима повезаним са природом математике и претпоставкама о њеном обиму и садржају. У књизи ће о томе бити много више речи, при чему се сама дефиниција неће променити али ће, надамо се, изложени материјал помоћи читаоцу да боље разуме предмет расправе. САДРЖАЈ ПРАИСТОРИЈА И ПРОТОИСТОРИЈА МАТЕМАТИКЕ, 7 ПОЧИЊЕ ИСТОРИЈА МАТЕМАТИКЕ, 15 Математика Месопотамије, 15 Математика Египта, 21 МАТЕМАТИКА АНТИЧКЕ ГРЧКЕ, 25 Стари Грци, кратак преглед њихове историје и културе до класичног доба, 25 Настанак грчке математике и филозофије у архајском добу, 33 Први филозофи и математичари, 35 Грчка филозофија од Талеса до Сократа, 39 Грчка математика у позном архајском и класичном добу или предеуклидски период грчке математике, 56 Три ствараоца грчке класичне филозофије и кратак осврт на почетак грчког класичног доба, 73 ХЕЛЕНИЗАМ, 89 Збивања у грчком простору на преласку из четвртог у трећи век пре наше ере, 89 Еуклид и његови Елементи, 92 Архимед, 102 Постархимедовска хеленистичка математика, 107 Математичка астрономија и њен утицај на развој грчке хеленистичке математике, 111 Осврт на филозофију математике у античкој Грчкој, 121 Залазак грчке цивилизације и последице по математику, 129 ПОЈАВА ХРИШЋАНСТВА И ЕВРОПСКО МРАЧНО ДОБА, 131 Календар, проблеми које ствара и коначно утврђивање календара у хришћанској епохи, 135 АРАБЉАНСКА МАТЕМАТИКА, 142 РЕНЕСАНСА И МАТЕМАТИКА У ЊОЈ, 150 Решавање кубне једначине, 157 МАТЕМАТИКА 17. И 18. ВЕКА, 169 Један поглед уназад, 169 Математика се покреће да се више никада не заустави, 178 Картезијанство, 182 Проналазак калкулуса, 185 МАТЕМАТИКА 19. ВЕКА И НАСТАНАК НОВИХ МАТЕМАТИЧКИХ ДИСЦИПЛИНА, 201 Настанак нееуклидске геометрије, 207 САВРЕМЕНА МАТЕМАТИКА, 220 Заснивање математичке анализе, 221 Појава математичке логике, 230 Појава теорије скупова, 232 Аксиоматизација природних бројева, 237 Крај 19. века, стање у математици и формирање свести о потреби заснивања математике, 240 ЗАСНИВАЊЕ МАТЕМАТИКЕ, 244 Правци у заснивању математике, 256 НОВИЈА ФИЛОЗОФИЈА МАТЕМАТИКЕ, 270 Актуелна питања новије филозофије математике, 270 Осврт, 270 ПРЕГЛЕД ИСТОРИЈЕ МАТЕМАТИКЕ КОД СРБА ДО ПОЛОВИНЕ 20. ВЕКА, 277 Димитрије Нешић и његово доба, 284 Време сазревања, 288 Михаило Петровић Алас и доба зрелости, 291 Закључна размишљања, 301 Детаљни подаци о књизи Наслов: Преглед историје и филозофије математике Издавач: Завод за уџбенике Страна: 305 (cb) Povez: тврди Писмо: ћирилица Формат: 25 cm Година издања: 2002.

Prikaži sve...
2,750RSD
forward
forward
Detaljnije

Darko Veselinović: Osnove teorije ravnoteže interesa Teorija igara se bavi izučavanjem optimalnih strategija u igrama, primenjujući matematičke metode. Pod igrom se podrazumeva proces u kome učestvuju dva ili više subjekata koji vode borbu za ostvarivanje svojih interesa. Svaki učesnik igre ima svoj cilj i koristi neku strategiju koja može dovesti do pobede ili poraza, u zavisnosti od ponašanja drugih igrača. Teorija igara nam pomaže da pronađemo optimalnu strategiju uzimajući u obzir moguće postupke drugih igrača i njihove resurse. Prvi matematički aspekti i primene teorije igara izloženi su u klasičnoj knjizi Džona fon Nojmana (John von Neumann) i Oskara Morgenšterna (Oskar Morgenstern) Teorija igara i ekonomsko ponašanje (Theory of Games and Economic Behavior), 1944. godine. Teorija igara je grana primenjene matematike koja najvažniju primenu nalazi u ekonomiji i uopšte u modeliranju konfliktnih situacija i načina njihovog razrešavanja, na primer u pitanjima strategije i taktike vojnih dejstava. Za razliku od ostalih matematičkih disciplina, za dostignuća u oblasti teorije igara dodeljeno je nekoliko Nobelovih nagrada. Iako ne postoji Nobelova nagrada za matematiku, laureati te nagrade za ekonomiju, za dostignuća u teoriji igara dosad su postali Robert Auman (Robert Aumann), Rajnhard Zelten (Reinhard Selten), Džon Neš (John Nash), Džon Haršanji (John Harsanyi) i Tomas Šeling (Thomas Schelling). Teorija igara naišla je na odjek i van okvira matematike i ekonomije. Američka književnica i novinarka Silvija Nazar (Sylvia Nasar) je 1998. godine objavila knjigu o sudbini Džona Neša, nobelovca i naučnika u oblasti teorije igara, po kojoj je 2001. godine snimljen film Briljantni um. Neke televizijske serije, kao Friend or Foe i Alias, se u svojim epizodama povremeno pozivaju na teoriju igara. Atraktivnost teorije igara proističe i iz njene veze sa drugim teorijama koje su, takođe, od velikog značaja u ekonomiji. Takva je, na primer, teorija mehanizama, koja se bavi izgradnjom društvenih mehanizama održivog razvoja. Formalizovani opis igre daje se spiskom njenih učesnika (igrača) i skupom strategija svakog od njih. Kao rezultat izbora strategija svakog od igrača formira se određena situacija (stanje) igre. Pojam igre podrazumeva modeliranje dve osnovne činjenice: Svaki učesnik igre samo delimično kontroliše situaciju; Svaki učesnik igre ima svoje interese. Normativni pravac u teoriji igara bavi se pitanjima koja su stanja igre pravedna, ravnotežna, optimalna, a takođe analizom načina za dostizanje tih stanja. Deskriptivni pravac izučava različite načine ponašanja igrača i svojstva rezultujućih stanja. Teorija igara se bavi raznim tipovima igara, pri čemu se igre klasifikuju po različitim kriterijumima na kooperativne i nekooperativne, simetrične i nesimetrične, igre nulte sume i igre nenulte sume, paralelne i sekvencijalne, igre sa potpunom i nepotpunom informacijom, beskonačne i konačne, diskretne i neprekidne. Posebno mesto zauzimaju pozicione igre, ali one nisu predmet ove knjige. Najveći uspesi postignuti su u izučavanju igara dva lica sa suprotstavljenim interesima (antagonističke igre), gde se i normativni i deskriptivni aspekt konfliktne situacije dobro uklapaju u koncept sedlaste tačke (maxmin) stanja. Analiza igara više lica suštinski se komplikuje zbog složenosti pitanja koja se odnose na mehanizme formiranja i delovanja koalicija. Modeliranje koalicionih uzajamnih postupaka u antagonističkim igrama dovelo je do teorije kooperativnih igara. U celini, ideje teorije igara imaju nesumnjivo značajnu podsticajnu ulogu, kako za samu matematiku, tako i u socijalno-ekonomskim i drugim istraživanjima. U poslednjem slučaju, međutim, njene sopstvene koncepcije su prilično apstraktne i neophodno ih je dopuniti konkretnijim konstrukcijama u svakoj oblasti primene, pa i u svakom konkretnom problemu. Upravo je tako autor postupio u ovoj knjizi, u kojoj je predmet proučavanja interakcija između aktera (bar dva) sa suprotstavljenim interesima. Svaki od igrača bira strategiju (način postupanja) koja će mu doneti najveću dobit, odnosno kojom će nadigrati drugog igrača. Ono što povezuje ovu matematičku teoriju sa drugim oblastima, na primer politikom, jeste priroda čoveka da svoju dobit planira i projektuje kroz gubitak drugog igrača. Drugim rečima, mnoge stvarne situacije mogu da se svedu na nekooperativne igre. Cela knjiga je koncipirana kao zbirka konkretnih problema koji se odnose na teoriju ravnoteže interesa i kroz rešavanje tih konkretnih primera demonstrira se način na koji se izlažu i dokazuju tvrđenja opšte teorije. Polazne pretpostavke teorije ravnoteže interesa su: pretpostavka o sebičnom interesu; princip neograničenog ponavljanja; princip veće koristi. Zainteresovanom čitaocu praćenje izloženog materijala olakšava činjenica da su problemi koji se razmatraju u ovoj knjizi uspešno razvrstani po složenosti i da se nove ideje postupno uvode. Tako se od igre dva igrača prelazi na igre više igrača sa konfliktnim interesima, da bi se zatim razmotrile igre sa formiranjem koalicija i napravio uvod u teoriju modeliranja tržišta. Autor daje i poređenje rešenja dobijenih po teoriji ravnoteže interesa i po kriterijumu Nešovog ekvilibrijuma (Nash equilibrium). Nešov ekvilibrijum može se neformalno opisati kao skup strategija pri kome nijedan igrač ne može da prođe bolje ako unilateralno promeni svoju strategiju. Drugim rečima, ako postoji igrač koji bi želeo da promeni svoju strategiju ukoliko bi otkrio protivničke strategije, onda dati skup strategija nije Nešov ekvilibrijum. Nešov ekvilibrijum može da ima neracionalne posledice i u uzastopnim igrama, jer igrači mogu da prete protivnicima koristeći neracionalne poteze. Autor pokazuje da teorija ravnoteže interesa može da nam pruži odgovor na neka pitanja na koja nema odgovora ako se zadržimo u okvirima Nešove teorije. Ova knjiga popunjava određenu prazninu u raspoloživoj literaturi iz ove oblasti na našem jeziku i privući će pažnju jednog kruga čitalaca zahvaljujući lepim i instruktivnim primerima. Nadam se da ona može da bude i podsticaj za čitaoca da se i sam upusti u avanturu izučavanja jedne atraktivne matematičke teorije i njenih primena. Prof. dr Ratko Tošic

Prikaži sve...
490RSD
forward
forward
Detaljnije

Pokrajinski zavod za zaštitu prirode 1987. 32 lista oštećene i izlizane korice fleka u gornjem uglu - kako listovi odmiču, fleka se smanjuje, a od polovine se gubi

Prikaži sve...
200RSD
forward
forward
Detaljnije

130 STRANA, MEK POVEZ. U KNJIZI SE NALAZI NEKOLIKO PEČATA PORODIČNE BIBLIOTEKE I UPISAN BROJ. NA HRBATU ZALEPLJENA NALEPNICA SA ISPISANIM BROJEM (VIDI SE NA DRUGOJ SLICI).

Prikaži sve...
255RSD
forward
forward
Detaljnije
Nazad
Sačuvaj