Filteri
close
Tip rezultata
Svi rezultati uključeni
keyboard_arrow_down
Kategorija
Sve kategorije
keyboard_arrow_down
Od
RSD
Do
RSD
Sortiraj po
keyboard_arrow_down
Objavljeno u proteklih
keyboard_arrow_down
Sajtovi uključeni u pretragu
Svi sajtovi uključeni
keyboard_arrow_down

Pratite promene cene putem maila

  • Da bi dobijali obaveštenja o promeni cene potrebno je da kliknete Prati oglas dugme koje se nalazi na dnu svakog oglasa i unesete Vašu mail adresu.
51-75 od 87 rezultata

Broj oglasa

Prikaz

format_list_bulleted
view_stream
51-75 od 87 rezultata

Prikaz

format_list_bulleted
view_stream

Režim promene aktivan!

Upravo ste u režimu promene sačuvane pretrage za frazu .
Možete da promenite frazu ili filtere i sačuvate trenutno stanje

Aktivni filteri

  • Tag

    Prirodne nauke
  • Tag

    Filozofija

Aristotel Politika Tvrdi povez Prevod Tomislav Ladan 1988 Zagreb Politika (gr. Πολιτικά) je jedno od značajnijih djela antičkog grčkog filozofa Aristotela, u kojem je on iznio jednu od prvih teorija političke filozofije o nastanku države. Naslovna reč politika doslovno znači `stvari vezane za polis`. Na kraju druge Aristotelove knjige, Nikomahove etike, stoji da istraživanje o etici nužno prelazi u politiku, pa se ova dva dela često smatraju delovima veće rasprave, ili možda serije predavanja koja se bave `filozofijom ljudskih stvari`. Aristotel (grč. Αριστοτέλης;[2] 384. p. n. e. — 322. p. n. e.)[3] bio je starogrčki filozof i besednik, Platonov učenik i jedna od najuticajnijih ličnosti u istoriji evropske misli.[4][5][6] Aristotel je bio grčki filozof i naučnik koji je rođen makedonskom gradu Stagira, Halkidiki, na severnoj periferiji klasične Grčke.[7] Njegov otac, Nikomah, je umro kad je Aristotel bio dete, nakon čega je Proksenus od Atarneusa postao njegov staratelj. U svojoj osamnaestoj godini, pošao je na Platonovu akademiju u Atini i ostao je tamo do svoje 37. godine (c. 347 p. n. e.). Njegovi rukopisi pokrivaju mnoge teme – uključujući fiziku, biologiju, zoologiju, metafiziku, logiku, etiku, estetiku, poetiku, pozorište, muziku, retoriku, lingvistiku, politiku i vladu – i čine prvi sveobuhvatni sistem zapadne filozofije. Ubrzo nakon Platonove smrti, Aristotel je napustio Atinu i, na zahtev Filipa Makedonskog, podučavao je Aleksandara Velikog počevši od 343 p. n. e.[5] Prema pisanju Encyclopædia Britannica, „Aristotel je bio prvi istinski naučnik u istoriji ... [i] svaki naučnik mu duguje.“[6] Podučavanje Aleksandra Velikog je pružilo Aristotelu mnoge mogućnosti i obilje materijala. On je osnovao biblioteku u Liceju koja je pomagala u produkciji mnogih od njegovih stotina knjiga. Činjenica da je Aristotel bio Platonov učenik je doprinela njegovom ranom gledištu platonizma, međutim nakon Platonove smrti, Aristotel se uronio u empirijska izučavanja i udaljio se od platonizma u korist empirizma.[8] On je verovao da svi ljudski koncepti i svo njihovo znanje ultimativno bazirani na percepciji. Aristotelovo gledište na prirodne nauke predstavlja podlogu u osnovi mnogih njegovih radova. Aristotelovi pogledi na fizičke nauke temeljno je oblikovalo gledište srednovekovnih učenjaka. Njegov uticaj doseže do renesanse i nije bio sistematski zamenjen do prosvetiteljstva i teorija kao što je klasična mehanika. Neka od Aristotelovih zooloških opažanja, kao što je hectocotyl (reproduktivna) ruka oktopusa, nisu potvrđena, niti osporena do 19. veka. Njegovi radovi sadrže najraniju poznatu studiju logike, koja je inkorporirana u kasnom 19. veku u modernu formalnu logiku. Aristotel je rođen u Stagiri, grčkoj koloniji na makedonskom poluostrvu. Njegov otac, Nikomah, radio je kao dvorski lekar kod kralja Amintasa III Makedonskog, dede Aleksandra Velikog. Veruje se da su Aristotelovi preci bili na ovoj dužnosti i kod ranijih makedonskih kraljeva. Pretpostavlja sa da je, kada je otišao u Atinu sa 18 godina, Aristotel imao i neka znanja iz medicine koja je dobio od oca. Od 18. do 37. godine pohađa Akademiju kao Platonov učenik. Razlike u filozofskim stavovima bile su osnova za stvaranje raznih legendi o odnosima Platona i Aristotela. Evidentno je da su neslaganja u stavovima postojala, pošto Aristotel vrlo rano pokazuje interesovanje za prirodne činjenice i zakone za razliku od Platonovih idealističkih stavova. Bilo kako bilo, nema nikakvih dokaza da su za vreme Aristotelovog boravka na Akademiji odnosi između dvojice filozofa bili zategnuti ili prekinuti. Zapravo, Aristotelovo ponašanje posle Platonove smrti, njegova stalna saradnja sa Ksenokratom i ostalim platonistima, te reference na Platonovo učenje u njegovim delima dokazuju da je, iako je i bilo sukoba mišljenja između Aristotela i Platona, među njima postojalo duboko razumevanje i tolerancija. Takođe, priče kažu da je Aristotel najviše neslaganja imao sa epikurejcima, koji su bili poznati i kao „klevetnici“. Iako se ovakve legende često nalaze kod ranih hrišćanskih pisaca kao što su Justin Isposnik i Grigorije Nazijazin, razlog leži najviše u čvrstom sistemu vrednosti koji su Aristotelu usadili rani hrišćanski jeretici, a ponajmanje u nekom dobro utemeljenom istorijskom verovanju. Posle Platonove smrti (346. p. n. e.), Aristotel sa Ksenokratom odlazi na dvor Hermijasa, vladara Atarnije u Maloj Aziji i ženi se sa Pitijom, vladarevom nećakinjom i pokćerkom. Godine 344. p. n. e., Hermijas gine u pobuni i Aristotel sa porodicom odlazi u Mitilenu. Posle godinu-dve, na poziv kralja Filipa II Makedonskog odlazi u rodnu Stagiru da bi postao tutor Aleksandra Velikog, koji je tad imao 13 godina. Plutarh piše da Aristotel Aleksandra nije poučavao samo etici i politici već ga je upućivao i u daleko dublje tajne filozofije. Mnoštvo je dokaza da je Aleksandar mnogo naučio od Aristotela, a i da je Aristotel imao koristi poučavajući mladog princa (iako se Bertrand Rasel ne slaže s ovim navodima). Zahvaljujući ovom uticaju, Aristotel je od Aleksandra dobijao značajna novčana sredstva za nabavku knjiga, a po svemu sudeći, obnovljena moć Aleksandrove vojske posledica je, barem delimično, i Aleksandrovog odnosa sa Aristotelom. Po navodima Plutarha i Diogena, Filip je 340. p. n. e. godine do temelja spalio Stagiru, Aristotelov rodni grad, ali je Aristotel uspeo nagovoriti Aleksandra da ga obnovi. Oko 335. p. n. e., Aleksandar odlazi u pohod na Aziju a Aristotel, koji je od Aleksandrovog dolaska na makedonski tron imao ulogu neslužbenog savetnika, odlazi ponovo u Atinu i otvara sopstvenu filozofsku školu. Moguće je da je Aristotel, po kazivanju Aula Gelijusa, vodio školu retorike za vreme svog prethodnog boravka u Atini; ali, sada, sledeći Platonov primer, on počinje davati redovne časove iz filozofije u gimnazijumu sagrađenom u čast Apolona Likijskog, po kojem je škola dobila ime Licej.[9] (Škola je takođe bila poznata i kao peripatetička škola pošto je Aristotel voleo da raspravlja o filozofskim pitanjima sa svojim učenicima šetajući gore-dole, peripateo (lagana šetnja), peripatoi (oko gimnazijuma).[10] Za vreme trinaestogodišnjeg perioda (335. p. n. e. — 322. p. n. e.) koji je proveo poučavajući u Liceju, Aristotel je napisao većinu svojih dela. Po uzoru na Platona, piše „Dijaloge“ u kojima popularnim jezikom iznosi osnove svog učenja. Takođe je napisao nekoliko studija (o kojima će biti govora kasnije) o fizici, metafizici itd; u kojima je stil formalniji, a jezik učeniji nego u „Dijalozima“. Ovi tekstovi otkrivaju u kojoj meri su mu bili korisni materijali i pisani izvori koje mu je Aleksandar svojevremeno obezbedio. Oni posebno pokazuju povezanost njegovog učenja sa radovima grčkih filozofa, njegovih prethodnika, te kako je nastavio, lično ili preko drugih filozofa, istraživanja prirodnih pojava. Plinije tvrdi da je Aleksandar stavio pod Aristotelov nadzor sve lovce, ribare i ptičare u svom kraljevstvu te sve nadzornike kraljevskih šuma, jezera, močvara i pašnjaka što je bilo vrlo verovatno uzevši u obzir Aristotelova radove iz zoologije. Aristotel je izuzetno dobro poznavao radove svojih prethodnika tako da Strabon konstatuje da je Aristotel među prvima počeo stvarati veliku biblioteku. U poslednjim godinama Aristotelovog života odnosi između njega i Aleksandra postaju veoma zategnuti zahvaljujući stradanju i kazni Kalistenovoj kojeg je Aristotel svojevremeno preporučio Aleksandru. Bez obzira na sve, u Atini su i dalje smatrali Aristotela Aleksandrovim prijateljem i predstavnikom Makedonije. Naravno, nakon što je u Atinu stigla vest o Aleksandrovoj smrti i nakon što izbili nemiri koji su doveli do Lamijskog rata Aristotel postaje nepopularan kao i svi Makedonci. Atmosferu nepoštovanja i omraženosti, koju su svojevremeno osetili Anaksagora i Sokrat, doživeo je, još bezrazložnije, i sam Aristotel. Napušta Atinu izjavljujući (po svedočenjima mnogih antičkih autoriteta) da neće pružiti Atinjanima šansu da se po treći put ogreše o filozofiju. Nalazi utočište na svom seoskom imanju u Kalkisu u Eubeji gde i umire sledeće godine, 322. p. n. e. od dugogodišnje bolesti. Priče da je njegova smrt posledica trovanja kukutom, kao i legenda da se bacio u more „jer nije mogao objasniti talase“ nemaju istorijske osnove. Vrlo malo se zna o Aristotelovom fizičkom izgledu osim iz njemu nenaklonjenih izvora. Njegove očuvane statue i biste, koje verovatno datiraju iz prvih godina delovanja peripatetičke škole, prikazuju čoveka prosečne visine, oštrih crta lica i pronicljivog pogleda. Na osnovu njegovih tekstova, testamenta (nesumnjivo verodostojnog), odlomaka iz njegovih pisama te svedočenja njegovih objektivnih savremenika zaključujemo da se radilo o visokomoralnom čoveku blage naravi, posvećenog porodici i prijateljima, koji je blago postupao sa svojim robovima, bio milostiv prema svojim neprijateljima i protivnicima i zahvalan svojim dobročiniteljima. Kada je platonizam prestao da dominira svetom hrišćanske misli i kada su se Aristotelovi radovi počeli proučavati objektivno i bez straha, u delima hrišćanskih pisaca 13. veka (isto kao i kod objektivnih pisaca njegovog vremena) Aristotel se opisuje kao čovek blage naravi, dostojanstvene pojave, skroman i bez ijednog moralnog nedostatka, „najveći od onih koji znaju“. Oblici državnog uređenja Aristotel je, za razliku od Platona, više bio orijentisan na istraživanje postojećeg društva. Analizom 158 ustava grčkih polisa, on je podelio državna uređenja na: dobra (monarhija, aristokratija i republika) i loša (tiranija, oligarhija i demokratija).[11] Aristotelovi spisi Glavni članak: Aristotelovi spisi Dela: `Organon` (sakupljeni Aristotelovi logički spisi), Poetika (O pesničkoj umetnosti), `Retorika`, `Nikomahova etika` (Nikomah je bio njegov otac), `Politika`, `Metafizika`, `Fizika`, `O duši`. Njegovi naslednici su učili po njegovim knjigama i po knjigama koje su pisane na osnovu njegovih dela. A, on je prvi koji je objektivno opisao svo dotadašnje znanje. Naglasak na `objektivno`, jer drugi filozofi su pisali dela, pesme, dijaloge. Aristotel je pisao udžbenike, u kojima je prvi put uredno pobrojao sva dotadašnja znanja (i, naravno, dopisao otkrića do kojih je i sam došao). Anticka filozofija, Platon, Drzava, Organon, Metafizika, Fizika...

Prikaži sve...
1,999RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Tomislav Ladan 1988 Zagreb Politika (gr. Πολιτικά) je jedno od značajnijih djela antičkog grčkog filozofa Aristotela, u kojem je on iznio jednu od prvih teorija političke filozofije o nastanku države. Naslovna reč politika doslovno znači `stvari vezane za polis`. Na kraju druge Aristotelove knjige, Nikomahove etike, stoji da istraživanje o etici nužno prelazi u politiku, pa se ova dva dela često smatraju delovima veće rasprave, ili možda serije predavanja koja se bave `filozofijom ljudskih stvari`. Aristotel (grč. Αριστοτέλης;[2] 384. p. n. e. — 322. p. n. e.)[3] bio je starogrčki filozof i besednik, Platonov učenik i jedna od najuticajnijih ličnosti u istoriji evropske misli.[4][5][6] Aristotel je bio grčki filozof i naučnik koji je rođen makedonskom gradu Stagira, Halkidiki, na severnoj periferiji klasične Grčke.[7] Njegov otac, Nikomah, je umro kad je Aristotel bio dete, nakon čega je Proksenus od Atarneusa postao njegov staratelj. U svojoj osamnaestoj godini, pošao je na Platonovu akademiju u Atini i ostao je tamo do svoje 37. godine (c. 347 p. n. e.). Njegovi rukopisi pokrivaju mnoge teme – uključujući fiziku, biologiju, zoologiju, metafiziku, logiku, etiku, estetiku, poetiku, pozorište, muziku, retoriku, lingvistiku, politiku i vladu – i čine prvi sveobuhvatni sistem zapadne filozofije. Ubrzo nakon Platonove smrti, Aristotel je napustio Atinu i, na zahtev Filipa Makedonskog, podučavao je Aleksandara Velikog počevši od 343 p. n. e.[5] Prema pisanju Encyclopædia Britannica, „Aristotel je bio prvi istinski naučnik u istoriji ... [i] svaki naučnik mu duguje.“[6] Podučavanje Aleksandra Velikog je pružilo Aristotelu mnoge mogućnosti i obilje materijala. On je osnovao biblioteku u Liceju koja je pomagala u produkciji mnogih od njegovih stotina knjiga. Činjenica da je Aristotel bio Platonov učenik je doprinela njegovom ranom gledištu platonizma, međutim nakon Platonove smrti, Aristotel se uronio u empirijska izučavanja i udaljio se od platonizma u korist empirizma.[8] On je verovao da svi ljudski koncepti i svo njihovo znanje ultimativno bazirani na percepciji. Aristotelovo gledište na prirodne nauke predstavlja podlogu u osnovi mnogih njegovih radova. Aristotelovi pogledi na fizičke nauke temeljno je oblikovalo gledište srednovekovnih učenjaka. Njegov uticaj doseže do renesanse i nije bio sistematski zamenjen do prosvetiteljstva i teorija kao što je klasična mehanika. Neka od Aristotelovih zooloških opažanja, kao što je hectocotyl (reproduktivna) ruka oktopusa, nisu potvrđena, niti osporena do 19. veka. Njegovi radovi sadrže najraniju poznatu studiju logike, koja je inkorporirana u kasnom 19. veku u modernu formalnu logiku. Aristotel je rođen u Stagiri, grčkoj koloniji na makedonskom poluostrvu. Njegov otac, Nikomah, radio je kao dvorski lekar kod kralja Amintasa III Makedonskog, dede Aleksandra Velikog. Veruje se da su Aristotelovi preci bili na ovoj dužnosti i kod ranijih makedonskih kraljeva. Pretpostavlja sa da je, kada je otišao u Atinu sa 18 godina, Aristotel imao i neka znanja iz medicine koja je dobio od oca. Od 18. do 37. godine pohađa Akademiju kao Platonov učenik. Razlike u filozofskim stavovima bile su osnova za stvaranje raznih legendi o odnosima Platona i Aristotela. Evidentno je da su neslaganja u stavovima postojala, pošto Aristotel vrlo rano pokazuje interesovanje za prirodne činjenice i zakone za razliku od Platonovih idealističkih stavova. Bilo kako bilo, nema nikakvih dokaza da su za vreme Aristotelovog boravka na Akademiji odnosi između dvojice filozofa bili zategnuti ili prekinuti. Zapravo, Aristotelovo ponašanje posle Platonove smrti, njegova stalna saradnja sa Ksenokratom i ostalim platonistima, te reference na Platonovo učenje u njegovim delima dokazuju da je, iako je i bilo sukoba mišljenja između Aristotela i Platona, među njima postojalo duboko razumevanje i tolerancija. Takođe, priče kažu da je Aristotel najviše neslaganja imao sa epikurejcima, koji su bili poznati i kao „klevetnici“. Iako se ovakve legende često nalaze kod ranih hrišćanskih pisaca kao što su Justin Isposnik i Grigorije Nazijazin, razlog leži najviše u čvrstom sistemu vrednosti koji su Aristotelu usadili rani hrišćanski jeretici, a ponajmanje u nekom dobro utemeljenom istorijskom verovanju. Posle Platonove smrti (346. p. n. e.), Aristotel sa Ksenokratom odlazi na dvor Hermijasa, vladara Atarnije u Maloj Aziji i ženi se sa Pitijom, vladarevom nećakinjom i pokćerkom. Godine 344. p. n. e., Hermijas gine u pobuni i Aristotel sa porodicom odlazi u Mitilenu. Posle godinu-dve, na poziv kralja Filipa II Makedonskog odlazi u rodnu Stagiru da bi postao tutor Aleksandra Velikog, koji je tad imao 13 godina. Plutarh piše da Aristotel Aleksandra nije poučavao samo etici i politici već ga je upućivao i u daleko dublje tajne filozofije. Mnoštvo je dokaza da je Aleksandar mnogo naučio od Aristotela, a i da je Aristotel imao koristi poučavajući mladog princa (iako se Bertrand Rasel ne slaže s ovim navodima). Zahvaljujući ovom uticaju, Aristotel je od Aleksandra dobijao značajna novčana sredstva za nabavku knjiga, a po svemu sudeći, obnovljena moć Aleksandrove vojske posledica je, barem delimično, i Aleksandrovog odnosa sa Aristotelom. Po navodima Plutarha i Diogena, Filip je 340. p. n. e. godine do temelja spalio Stagiru, Aristotelov rodni grad, ali je Aristotel uspeo nagovoriti Aleksandra da ga obnovi. Oko 335. p. n. e., Aleksandar odlazi u pohod na Aziju a Aristotel, koji je od Aleksandrovog dolaska na makedonski tron imao ulogu neslužbenog savetnika, odlazi ponovo u Atinu i otvara sopstvenu filozofsku školu. Moguće je da je Aristotel, po kazivanju Aula Gelijusa, vodio školu retorike za vreme svog prethodnog boravka u Atini; ali, sada, sledeći Platonov primer, on počinje davati redovne časove iz filozofije u gimnazijumu sagrađenom u čast Apolona Likijskog, po kojem je škola dobila ime Licej.[9] (Škola je takođe bila poznata i kao peripatetička škola pošto je Aristotel voleo da raspravlja o filozofskim pitanjima sa svojim učenicima šetajući gore-dole, peripateo (lagana šetnja), peripatoi (oko gimnazijuma).[10] Za vreme trinaestogodišnjeg perioda (335. p. n. e. — 322. p. n. e.) koji je proveo poučavajući u Liceju, Aristotel je napisao većinu svojih dela. Po uzoru na Platona, piše „Dijaloge“ u kojima popularnim jezikom iznosi osnove svog učenja. Takođe je napisao nekoliko studija (o kojima će biti govora kasnije) o fizici, metafizici itd; u kojima je stil formalniji, a jezik učeniji nego u „Dijalozima“. Ovi tekstovi otkrivaju u kojoj meri su mu bili korisni materijali i pisani izvori koje mu je Aleksandar svojevremeno obezbedio. Oni posebno pokazuju povezanost njegovog učenja sa radovima grčkih filozofa, njegovih prethodnika, te kako je nastavio, lično ili preko drugih filozofa, istraživanja prirodnih pojava. Plinije tvrdi da je Aleksandar stavio pod Aristotelov nadzor sve lovce, ribare i ptičare u svom kraljevstvu te sve nadzornike kraljevskih šuma, jezera, močvara i pašnjaka što je bilo vrlo verovatno uzevši u obzir Aristotelova radove iz zoologije. Aristotel je izuzetno dobro poznavao radove svojih prethodnika tako da Strabon konstatuje da je Aristotel među prvima počeo stvarati veliku biblioteku. U poslednjim godinama Aristotelovog života odnosi između njega i Aleksandra postaju veoma zategnuti zahvaljujući stradanju i kazni Kalistenovoj kojeg je Aristotel svojevremeno preporučio Aleksandru. Bez obzira na sve, u Atini su i dalje smatrali Aristotela Aleksandrovim prijateljem i predstavnikom Makedonije. Naravno, nakon što je u Atinu stigla vest o Aleksandrovoj smrti i nakon što izbili nemiri koji su doveli do Lamijskog rata Aristotel postaje nepopularan kao i svi Makedonci. Atmosferu nepoštovanja i omraženosti, koju su svojevremeno osetili Anaksagora i Sokrat, doživeo je, još bezrazložnije, i sam Aristotel. Napušta Atinu izjavljujući (po svedočenjima mnogih antičkih autoriteta) da neće pružiti Atinjanima šansu da se po treći put ogreše o filozofiju. Nalazi utočište na svom seoskom imanju u Kalkisu u Eubeji gde i umire sledeće godine, 322. p. n. e. od dugogodišnje bolesti. Priče da je njegova smrt posledica trovanja kukutom, kao i legenda da se bacio u more „jer nije mogao objasniti talase“ nemaju istorijske osnove. Vrlo malo se zna o Aristotelovom fizičkom izgledu osim iz njemu nenaklonjenih izvora. Njegove očuvane statue i biste, koje verovatno datiraju iz prvih godina delovanja peripatetičke škole, prikazuju čoveka prosečne visine, oštrih crta lica i pronicljivog pogleda. Na osnovu njegovih tekstova, testamenta (nesumnjivo verodostojnog), odlomaka iz njegovih pisama te svedočenja njegovih objektivnih savremenika zaključujemo da se radilo o visokomoralnom čoveku blage naravi, posvećenog porodici i prijateljima, koji je blago postupao sa svojim robovima, bio milostiv prema svojim neprijateljima i protivnicima i zahvalan svojim dobročiniteljima. Kada je platonizam prestao da dominira svetom hrišćanske misli i kada su se Aristotelovi radovi počeli proučavati objektivno i bez straha, u delima hrišćanskih pisaca 13. veka (isto kao i kod objektivnih pisaca njegovog vremena) Aristotel se opisuje kao čovek blage naravi, dostojanstvene pojave, skroman i bez ijednog moralnog nedostatka, „najveći od onih koji znaju“. Oblici državnog uređenja Aristotel je, za razliku od Platona, više bio orijentisan na istraživanje postojećeg društva. Analizom 158 ustava grčkih polisa, on je podelio državna uređenja na: dobra (monarhija, aristokratija i republika) i loša (tiranija, oligarhija i demokratija).[11] Aristotelovi spisi Glavni članak: Aristotelovi spisi Dela: `Organon` (sakupljeni Aristotelovi logički spisi), Poetika (O pesničkoj umetnosti), `Retorika`, `Nikomahova etika` (Nikomah je bio njegov otac), `Politika`, `Metafizika`, `Fizika`, `O duši`. Njegovi naslednici su učili po njegovim knjigama i po knjigama koje su pisane na osnovu njegovih dela. A, on je prvi koji je objektivno opisao svo dotadašnje znanje. Naglasak na `objektivno`, jer drugi filozofi su pisali dela, pesme, dijaloge. Aristotel je pisao udžbenike, u kojima je prvi put uredno pobrojao sva dotadašnja znanja (i, naravno, dopisao otkrića do kojih je i sam došao). Anticka filozofija, Platon, Drzava, Organon, Metafizika, Fizika...

Prikaži sve...
1,990RSD
forward
forward
Detaljnije

Autor - osoba Hume, David Naslov Istraživanje o ljudskom razumu / David Hume ; preveo Ivo Vidan ; pogovor Gajo Petrović Jedinstveni naslov An enquiry concerning human understanding. scc Vrsta građe knjiga Ciljna grupa odrasli, ozbiljna (nije lepa knjiž.) Jezik hrvatski Godina 1956 Izdavanje i proizvodnja Zagreb : Kultura, 1956 (Zagreb : Tipografija) Fizički opis 259 str., [1] list : autorova slika ; 20 cm Drugi autori - osoba Vidan, Ivo Petrović, Gajo, 1927-1993 = Petrović, Gajo, 1927-1993 (Karton sa omotom.) Napomene Prevod dela : An enquiry concerning human understanding Problem spoznaje u filozofiji D. Huma : str. 211-256 Predmetne odrednice Hjum, Dejvid, 1711-1776 -- „Istraživanje o ljudskom razumu“ Filozofija Dejvid Hjum Dejvid Hjum (engl. David Hume; 1711–1776) je škotski filozof, ekonomista i istoričar. Rođen je 7. maja 1711. u Edinburgu, umro je 25. avgusta 1776. isto u Edinburgu bio je jedan skeptičar počeo je da studira prava, koja nije do kraja završio. U toku studija dolazi u dodir sa Njutnovom fizikom, kao i sa delima engleskog filozofa Džona Loka koji mu daje pravac u filozofiji. Hjumov Uticaj Dejvid Hjum je bio jedna od značajnijih ličnosti njegovog stoleća. Na evropskom kontinentu, a naročito u Francuskoj, važio je za jednog od većih engleskih filozofa. U Nemačkoj je Kant tvrdio, da ga je Hjumova lektira iz dogme i dremeža probudila. Hjumove moralno filozofske ideje utiču takođe na utilitariste 19. veka, naročito na Džeremi Bentama i Džona Stjuarta Mila. Život Kada bi čovek pustio današnje profesore filozofije, da odluče ko je bio najbolji prozni autor na engleskom jeziku, pobedio bi sigurno Hjum. Hjum je rano doneo odluku o filozofiranju, podstaknut marljivim čitanjem lektire, pisao je taj šesnaestogodišnjak, hteo je: „Kao jedan filozof da govori“. Godinu dana kasnije, da bi ispunio želju svojim roditeljima upisuje se da studira prava, za koje nije pokazao veliko interesovanje. Počinje ozbiljno da se upušta u filozofske probleme, njegov veliki prijatelj u mislima postao je Ciceron. 1729. dobio je nervni slom i žali se na jake depresije koje češće dobiva. Ta depresivna bolest trajala je četiri godine, pokušao je da se izleči čvrstom disciplinom, tako što bi se dnevno po par sati posvetio filozofskim posmatranjima. Ali baš tako lako, kao što je on zamislio, nije išlo. Da bi se što pre izlečio pokušao je sa normalnim poslom. Počeo je da radi kao trgovac u jednoj prodavnici šećera u Bristolu. Brzo je shvatio da taj zanat nije za njega i pokušava ponovo sa čistom filozofskom egzistencijom. Hjum putuje za Francusku i tamo boravi tri godine, gde je životni standart mnogo skuplji nego u Engleskoj, tu počinje svoje prvo delo a završava ga u Londonu „Traktat“ Rasprava o Ljudskoj Prirodi (1739–40), koje važi za majstorsko delo koje je Hjum objavio. Više sreće imao je Hjum sa esejima o Moralu i Politici. U krug užih prijatelja pripada Adam Smit, koji se smatrao ocem ekonomije i poznati osnivač savremene geologije Džejms Hjuton. Hjum skeptičar Njegova skeptičnost se odražavala pre svega protiv metafizike, njoj i sa tim svakoj spekulaciji o nedostupnim stvarima bile su njegova glavna borba. Metafizičke ideje bile su za njega produkt neplodnog naprezanja čovečije taštine, koja pokušava u predmete da uđe koje su razumu potpuno nepristupačni. Ta izmišljena filozofija (Pseudofilozofija) mora se nemilosrdno otkriti (tako misli Hjum). Takođe njegova molba za profesorsko mesto na univerzitetu u Edinburgu bila je odbijena, verovatno zato što je Hjum okarakterisan kao religiozni skeptičar. Delo koje je objavio 1748 „Jedno istraživanje u pogledu ljudskog razuma“ moguće ja da obuhvata njegov Traktat (Rasprava). Etika U etici zastupa Hjum mišljenje da „dobro i loše nisu zavisni od razuma, nego samo od njihovog značaja i u sreću izrasli“. Dela • 1751. Istraživanje moralnih principa • 1758. Ispitivanje čovečijeg razuma • 1779. Dijalog o prirodnoj religiji MG148 (N)

Prikaži sve...
2,490RSD
forward
forward
Detaljnije

odlično stanje U teorijskoj fizici, kvantna teorija polja je teorijski okvir koji kombinuje klasičnu teoriju polja, specijalnu relativnost i kvantnu mehaniku[1] i koristi se za konstrukciju fizičkih modela subatomskih čestica (u fizici čestica) i kvazičestica (u fizici kondenzovane materije). Kvantna teorija polja tretira čestice kao pobuđena stanja (koja se nazivaju i kvanti) njihovih temeljnih polja, koja su, u određenom smislu, fundamentalnija od osnovnih čestica. Interakcije između čestica opisane su pojmovima interakcije u Lagranžijanovoj teoriji polja koja uključuje njihova odgovarajuća polja. Svaka interakcija može biti vizuelno predstavljena Fajmanovim dijagramima, koji su formalni računski alati u procesu relativističke teorije perturbacija. Kao uspešan teorijski radni okvir danas, kvantna teorija polja proizašla je iz rada generacija teorijskih fizičara 20. veka. Njen razvoj je počeo 1920-ih sa opisom interakcija između svetlosti i elektrona, kulminirajući u prvoj kvantnoj teoriji polja - kvantnoj elektrodinamici . Velika teorijska prepreka ubrzo je usledila sa pojavom i postojanošću raznih beskonačnosti u perturbativnim proračunima, problem koji je rešen tek pedesetih godina prošlog veka izumom renormalizacijske procedure. Druga velika prepreka bila je očigledna nesposobnost kvantne teorije polja da opiše slabe i jake interakcije, do te mere da su neki teoretičari tražili napuštanje teorijskog pristupa. Razvoj teorije kalibra i završetak Standardnog modela 1970-ih doveli su do renesanse kvantne teorije polja. Teorijska osnova Uredi Linije magnetnog polja vizualizovane upotrebom gvožđa. Kada je komad papira posut gvozdenim strugotinama i postavljen iznad magnetnog šipka, strugotine se poravnavaju prema smeru magnetnog polja, formirajući lukove. Kvantna teorija polja je rezultat kombinacije klasične teorije polja, kvantne mehanike i posebne relativnosti.[1] Najstarija uspešna klasična teorija polja je ona koja je nastala iz Njutnovog zakona univerzalne gravitacije, uprkos potpunoj odsutnosti koncepta polja iz njegovog traktata iz 1687. godine Matematički principi prirodne filozofije. Sila gravitacije koju opisuje Njutn je „akcija na daljinu” - njeni efekti na udaljene objekte su trenutni, bez obzira na udaljenost. Matematički fizičari su tek u 18. veku otkrili prikladan opis gravitacije na osnovu polja - numeričke veličine (vektor) dodeljene svakoj tački u prostoru koja ukazuje na delovanje gravitacije na bilo koju česticu u toj tački. Međutim, ovo se smatralo samo matematičkim trikom. [2] Polja su počela da preuzimaju sopstveno postojanje sa razvojem elektromagnetizma u 19. veku. Majkl Faradej je 1845. skovao engleski termin „polje” (engl. field). On je unosio polja kao svojstva prostora (čak i kada je lišen materije) koja imaju fizičke efekte. On se protivio „akciji na daljinu` i predložio da se interakcije između objekata odvijaju kroz „linije sile” koje ispunjavaju prostor. Ovaj opis polja ostaje do danas.[3][4][5] Teorija klasičnog elektromagnetizma završena je 1862. godine sa Maksvelovim jednačinama, koje su opisale odnos između električnog polja, magnetnog polja, električne struje i električnog naboja. Maksvelove jednačine podrazumevale su postojanje elektromagnetnih talasa, fenomen gde se električna i magnetska polja šire iz jedne prostorne tačke u drugu pri konačnoj brzini, koja ispada da je brzina svetlosti. „Akcija na daljinu” je tako konačno odbačena.[3] Uprkos ogromnom uspehu klasičnog elektromagnetizma, nije mogao da uzme u obzir diskretne linije u atomskom spektru, niti raspodelu zračenja crnog tela u različitim talasnim dužinama.[6] Plankovo istraživanje zračenja crnog tela označilo je početak kvantne mehanike. On je tretirao atome, koji apsorbuju i emituju elektromagnetno zračenje, kao sitne oscilatore sa ključnim svojstvom da njihove energije mogu da preuzmu samo niz diskretnih, a ne kontinuiranih vrednosti. Oni su poznati kao kvantni harmonički oscilatori. Ovaj proces ograničavanja energije na diskretne vrednosti zove se kvantizacija.[7] Na osnovu ove ideje, Albert Ajnštajn je predložio 1905. godine objašnjenje za fotoelektrični efekat, da se svetlost sastoji od pojedinačnih paketa energije koji se nazivaju fotoni (kvant svetlosti). To implicira da elektromagnetno zračenje, dok su talasi u klasičnom elektromagnetnom polju, takođe postoji u obliku čestica.[6] Nils Bor je 1913. godine uveo Borov model atomske strukture, pri čemu elektroni unutar atoma mogu preuzeti samo niz diskretnih, a ne kontinuiranih energija. Ovo je još jedan primer kvantizacije. Borov model uspešno je objasnio diskretnu prirodu atomskih spektralnih linija. Godine 1924. Luj de Broj je predložio hipotezu o dualnosti talasa i čestica, da mikroskopske čestice pokazuju osobine i talasa i čestica u različitim okolnostima.[6] Ujedinjavanje ovih raspršenih ideja, koherentna disciplina, kvantna mehanika, formulisana je između 1925. i 1926. godine, sa važnim doprinosima de Broja, Vernera Hajzenberga, Maksa Borna, Ervina Šredingera, Pola Diraka i Volfganga Paulija.[2]:22-23 Iste godine kada je izašao i njegov rad o fotoelektričnom efektu, Ajnštajn je objavio svoju teoriju posebne relativnosti, izgrađenu na Maksvelovom elektromagnetizmu. Nova pravila, nazvana Lorencova transformacija, data su za način na koji se vremenske i prostorne koordinate događaja menjaju pod promenama brzine posmatrača, a razlika između vremena i prostora je zamagljena.[2]:19 Predloženo je da svi fizički zakoni moraju biti isti za posmatrače pri različitim brzinama, tj. da su fizički zakoni invarijantni pod Lorencovim transformacijama. Ostale su još dve teškoće. Šredingerova jednačina, na kojoj se temelji kvantna mehanika, mogla bi objasniti stimulisanu emisiju zračenja iz atoma, gde elektron emituje novi foton pod delovanjem spoljnog elektromagnetnog polja, ali nije mogla objasniti spontanu emisiju, gde se elektron spontano smanjuje u energiji i emituje foton čak i bez dejstva spoljašnjeg elektromagnetnog polja. Teorijski, Šredingerova jednačina nije mogla da opiše fotone i bila je u suprotnosti sa principima posebne relativnosti - vreme tretira kao običan broj, dok promoviše prostorne koordinate za linearne operatore kvantna fizika kvant

Prikaži sve...
4,990RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Na desetak mesta hem. olovkom ostavljane kvacice na marginama i po koja recenica podvucena, nista strasno! Sve ostalo uredno! Metafizika Mnogi će reći da je Aristotelova Metafizika vrhunac njegove filozofije. Njen uticaj na današnji način razmišljanja je neizmeran. Centralna postavka metafizičkih spisa glasi da svet postoji onakav kakav se pojavljuje i da ga mogu razumeti obični ljudi s odgovarajućim sposobnostima i uz vežbu. Naime, u suštini metafizika i izučava ono što je „iza“ prirode, ili kako Stagiranin kaže „prve principe i uzroke bivstva“. Izgradnju svoje kolosalne „prve filozofije“, Aristotel započinje temeljitom kritikom Platonove teorije ideja, na osnovu koje će se u srednjem veku odvijati čuvena rasprava o statusu univerzalija (opštih pojmova). Aristotel je prvi jasno uveo ontološku razliku, do koje posebno drži jedan od najznačajnijih savremenih filozofa Martin Hajdeger. Aristotel (grč. Αριστοτέλης;[2] 384. p. n. e. — 322. p. n. e.)[3] bio je starogrčki filozof i besednik, Platonov učenik i jedna od najuticajnijih ličnosti u istoriji evropske misli.[4][5][6] Aristotel je bio grčki filozof i naučnik koji je rođen makedonskom gradu Stagira, Halkidiki, na severnoj periferiji klasične Grčke.[7] Njegov otac, Nikomah, je umro kad je Aristotel bio dete, nakon čega je Proksenus od Atarneusa postao njegov staratelj. U svojoj osamnaestoj godini, pošao je na Platonovu akademiju u Atini i ostao je tamo do svoje 37. godine (c. 347 p. n. e.). Njegovi rukopisi pokrivaju mnoge teme – uključujući fiziku, biologiju, zoologiju, metafiziku, logiku, etiku, estetiku, poetiku, pozorište, muziku, retoriku, lingvistiku, politiku i vladu – i čine prvi sveobuhvatni sistem zapadne filozofije. Ubrzo nakon Platonove smrti, Aristotel je napustio Atinu i, na zahtev Filipa Makedonskog, podučavao je Aleksandara Velikog počevši od 343 p. n. e.[5] Prema pisanju Encyclopædia Britannica, „Aristotel je bio prvi istinski naučnik u istoriji ... [i] svaki naučnik mu duguje.“[6] Podučavanje Aleksandra Velikog je pružilo Aristotelu mnoge mogućnosti i obilje materijala. On je osnovao biblioteku u Liceju koja je pomagala u produkciji mnogih od njegovih stotina knjiga. Činjenica da je Aristotel bio Platonov učenik je doprinela njegovom ranom gledištu platonizma, međutim nakon Platonove smrti, Aristotel se uronio u empirijska izučavanja i udaljio se od platonizma u korist empirizma.[8] On je verovao da svi ljudski koncepti i svo njihovo znanje ultimativno bazirani na percepciji. Aristotelovo gledište na prirodne nauke predstavlja podlogu u osnovi mnogih njegovih radova. Aristotelovi pogledi na fizičke nauke temeljno je oblikovalo gledište srednovekovnih učenjaka. Njegov uticaj doseže do renesanse i nije bio sistematski zamenjen do prosvetiteljstva i teorija kao što je klasična mehanika. Neka od Aristotelovih zooloških opažanja, kao što je hectocotyl (reproduktivna) ruka oktopusa, nisu potvrđena, niti osporena do 19. veka. Njegovi radovi sadrže najraniju poznatu studiju logike, koja je inkorporirana u kasnom 19. veku u modernu formalnu logiku. Aristotel je rođen u Stagiri, grčkoj koloniji na makedonskom poluostrvu. Njegov otac, Nikomah, radio je kao dvorski lekar kod kralja Amintasa III Makedonskog, dede Aleksandra Velikog. Veruje se da su Aristotelovi preci bili na ovoj dužnosti i kod ranijih makedonskih kraljeva. Pretpostavlja sa da je, kada je otišao u Atinu sa 18 godina, Aristotel imao i neka znanja iz medicine koja je dobio od oca. Od 18. do 37. godine pohađa Akademiju kao Platonov učenik. Razlike u filozofskim stavovima bile su osnova za stvaranje raznih legendi o odnosima Platona i Aristotela. Evidentno je da su neslaganja u stavovima postojala, pošto Aristotel vrlo rano pokazuje interesovanje za prirodne činjenice i zakone za razliku od Platonovih idealističkih stavova. Bilo kako bilo, nema nikakvih dokaza da su za vreme Aristotelovog boravka na Akademiji odnosi između dvojice filozofa bili zategnuti ili prekinuti. Zapravo, Aristotelovo ponašanje posle Platonove smrti, njegova stalna saradnja sa Ksenokratom i ostalim platonistima, te reference na Platonovo učenje u njegovim delima dokazuju da je, iako je i bilo sukoba mišljenja između Aristotela i Platona, među njima postojalo duboko razumevanje i tolerancija. Takođe, priče kažu da je Aristotel najviše neslaganja imao sa epikurejcima, koji su bili poznati i kao „klevetnici“. Iako se ovakve legende često nalaze kod ranih hrišćanskih pisaca kao što su Justin Isposnik i Grigorije Nazijazin, razlog leži najviše u čvrstom sistemu vrednosti koji su Aristotelu usadili rani hrišćanski jeretici, a ponajmanje u nekom dobro utemeljenom istorijskom verovanju. Posle Platonove smrti (346. p. n. e.), Aristotel sa Ksenokratom odlazi na dvor Hermijasa, vladara Atarnije u Maloj Aziji i ženi se sa Pitijom, vladarevom nećakinjom i pokćerkom. Godine 344. p. n. e., Hermijas gine u pobuni i Aristotel sa porodicom odlazi u Mitilenu. Posle godinu-dve, na poziv kralja Filipa II Makedonskog odlazi u rodnu Stagiru da bi postao tutor Aleksandra Velikog, koji je tad imao 13 godina. Plutarh piše da Aristotel Aleksandra nije poučavao samo etici i politici već ga je upućivao i u daleko dublje tajne filozofije. Mnoštvo je dokaza da je Aleksandar mnogo naučio od Aristotela, a i da je Aristotel imao koristi poučavajući mladog princa (iako se Bertrand Rasel ne slaže s ovim navodima). Zahvaljujući ovom uticaju, Aristotel je od Aleksandra dobijao značajna novčana sredstva za nabavku knjiga, a po svemu sudeći, obnovljena moć Aleksandrove vojske posledica je, barem delimično, i Aleksandrovog odnosa sa Aristotelom. Po navodima Plutarha i Diogena, Filip je 340. p. n. e. godine do temelja spalio Stagiru, Aristotelov rodni grad, ali je Aristotel uspeo nagovoriti Aleksandra da ga obnovi. Oko 335. p. n. e., Aleksandar odlazi u pohod na Aziju a Aristotel, koji je od Aleksandrovog dolaska na makedonski tron imao ulogu neslužbenog savetnika, odlazi ponovo u Atinu i otvara sopstvenu filozofsku školu. Moguće je da je Aristotel, po kazivanju Aula Gelijusa, vodio školu retorike za vreme svog prethodnog boravka u Atini; ali, sada, sledeći Platonov primer, on počinje davati redovne časove iz filozofije u gimnazijumu sagrađenom u čast Apolona Likijskog, po kojem je škola dobila ime Licej.[9] (Škola je takođe bila poznata i kao peripatetička škola pošto je Aristotel voleo da raspravlja o filozofskim pitanjima sa svojim učenicima šetajući gore-dole, peripateo (lagana šetnja), peripatoi (oko gimnazijuma).[10] Za vreme trinaestogodišnjeg perioda (335. p. n. e. — 322. p. n. e.) koji je proveo poučavajući u Liceju, Aristotel je napisao većinu svojih dela. Po uzoru na Platona, piše „Dijaloge“ u kojima popularnim jezikom iznosi osnove svog učenja. Takođe je napisao nekoliko studija (o kojima će biti govora kasnije) o fizici, metafizici itd; u kojima je stil formalniji, a jezik učeniji nego u „Dijalozima“. Ovi tekstovi otkrivaju u kojoj meri su mu bili korisni materijali i pisani izvori koje mu je Aleksandar svojevremeno obezbedio. Oni posebno pokazuju povezanost njegovog učenja sa radovima grčkih filozofa, njegovih prethodnika, te kako je nastavio, lično ili preko drugih filozofa, istraživanja prirodnih pojava. Plinije tvrdi da je Aleksandar stavio pod Aristotelov nadzor sve lovce, ribare i ptičare u svom kraljevstvu te sve nadzornike kraljevskih šuma, jezera, močvara i pašnjaka što je bilo vrlo verovatno uzevši u obzir Aristotelova radove iz zoologije. Aristotel je izuzetno dobro poznavao radove svojih prethodnika tako da Strabon konstatuje da je Aristotel među prvima počeo stvarati veliku biblioteku. U poslednjim godinama Aristotelovog života odnosi između njega i Aleksandra postaju veoma zategnuti zahvaljujući stradanju i kazni Kalistenovoj kojeg je Aristotel svojevremeno preporučio Aleksandru. Bez obzira na sve, u Atini su i dalje smatrali Aristotela Aleksandrovim prijateljem i predstavnikom Makedonije. Naravno, nakon što je u Atinu stigla vest o Aleksandrovoj smrti i nakon što izbili nemiri koji su doveli do Lamijskog rata Aristotel postaje nepopularan kao i svi Makedonci. Atmosferu nepoštovanja i omraženosti, koju su svojevremeno osetili Anaksagora i Sokrat, doživeo je, još bezrazložnije, i sam Aristotel. Napušta Atinu izjavljujući (po svedočenjima mnogih antičkih autoriteta) da neće pružiti Atinjanima šansu da se po treći put ogreše o filozofiju. Nalazi utočište na svom seoskom imanju u Kalkisu u Eubeji gde i umire sledeće godine, 322. p. n. e. od dugogodišnje bolesti. Priče da je njegova smrt posledica trovanja kukutom, kao i legenda da se bacio u more „jer nije mogao objasniti talase“ nemaju istorijske osnove. Vrlo malo se zna o Aristotelovom fizičkom izgledu osim iz njemu nenaklonjenih izvora. Njegove očuvane statue i biste, koje verovatno datiraju iz prvih godina delovanja peripatetičke škole, prikazuju čoveka prosečne visine, oštrih crta lica i pronicljivog pogleda. Na osnovu njegovih tekstova, testamenta (nesumnjivo verodostojnog), odlomaka iz njegovih pisama te svedočenja njegovih objektivnih savremenika zaključujemo da se radilo o visokomoralnom čoveku blage naravi, posvećenog porodici i prijateljima, koji je blago postupao sa svojim robovima, bio milostiv prema svojim neprijateljima i protivnicima i zahvalan svojim dobročiniteljima. Kada je platonizam prestao da dominira svetom hrišćanske misli i kada su se Aristotelovi radovi počeli proučavati objektivno i bez straha, u delima hrišćanskih pisaca 13. veka (isto kao i kod objektivnih pisaca njegovog vremena) Aristotel se opisuje kao čovek blage naravi, dostojanstvene pojave, skroman i bez ijednog moralnog nedostatka, „najveći od onih koji znaju“. Oblici državnog uređenja Aristotel je, za razliku od Platona, više bio orijentisan na istraživanje postojećeg društva. Analizom 158 ustava grčkih polisa, on je podelio državna uređenja na: dobra (monarhija, aristokratija i republika) i loša (tiranija, oligarhija i demokratija).[11] Aristotelovi spisi Glavni članak: Aristotelovi spisi Dela: `Organon` (sakupljeni Aristotelovi logički spisi), Poetika (O pesničkoj umetnosti), `Retorika`, `Nikomahova etika` (Nikomah je bio njegov otac), `Politika`, `Metafizika`, `Fizika`, `O duši`. Njegovi naslednici su učili po njegovim knjigama i po knjigama koje su pisane na osnovu njegovih dela. A, on je prvi koji je objektivno opisao svo dotadašnje znanje. Naglasak na `objektivno`, jer drugi filozofi su pisali dela, pesme, dijaloge. Aristotel je pisao udžbenike, u kojima je prvi put uredno pobrojao sva dotadašnja znanja (i, naravno, dopisao otkrića do kojih je i sam došao). Anticka filozofija, Platon, Drzava, Organon, Metafizika, Fizika...

Prikaži sve...
1,790RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Ruđer Bošković (Dubrovnik, 18. maj 1711 — Milano, 13. februar 1787)[1] bio je dubrovački polihistor. On je bio univerzalan stvaralac: filozof, matematičar, astronom, fizičar, inženjer, pedagog, geolog, arhitekta, arheolog, konstruktor, optičar, diplomata, putopisac, profesor, najbolji pesnik na latinskom jeziku osamnaestog veka i prevodilac-poliglota.[2][3] Njegovo etničko poreklo i naučno nasleđe, imajući u vidu istorijsko razdoblje u kome je živeo i danas je predmet brojnih polemika. Pored srpskog[4][5][6][7][8][9][10][11][12][13][14][15] različiti izvori navode i moguće hrvatsko poreklo, izvori takođe nisu jedinstveni ni po pitanju izvorne verske pripadnosti njegove porodice.[16][17] Jedan je od najznačajnijih naučnika svoga vremena. Uvršten je među 100 najznamenitijih Srba.[18] Bio je osnivač Milanske opservatorije i direktor Optičkog instituta Francuske mornarice, unapredio je prva četiri fundamenta metafizike i otvorio peti.[19] Biografija Philosophiae naturalis theoria, 1758 Portret Boškovića engleskog slikara Roberta Edža Pajna, 1760. Rođen je 18. maja 1711. godine kao sedmo dete trgovca Nikole Boškovića, Srbina[20] iz Orahova kod Trebinja u Hercegovini i majke Paole, italijanskog porekla, iz porodice Bara Betere, poznatog dubrovačkog pesnika.[21] Njegov brat je bio Bartolomej Baro Bošković. Ceo radni vek proveo je u tuđini, gde je stekao i svetsku slavu, a samo jednom svratio u svoj zavičajni Dubrovnik, 1747. godine. Gimnaziju je završio u Dubrovniku u Jezuitskom zavodu. Sa 15 godine 1725. stupa u Jezuitski red i odlazi u Rim. Stekao je vrlo visoko obrazovanje, mukotrpno se penjući jezuitskom hijerarhijom. Studirao je dve godine retoriku i poeziju, zatim tri godine filozofiju i matematiku, da bi obrazovanje okončao nakon pet godina teologije.[22] Pisao je naučna dela u stihovima i pisao je poeziju od kada je učio gimnaziju.[23] Sebe je opisivao kao astronoma i pesnika. Svoje otadžbinsko poreklo nikada nije krio – ostao je Slovinac, kako su se tada nazivali Južni Sloveni.[24] Umro je u vili Bosii u Milanu,[25] pritisnut umorom i duševnom slabošću ali i posledicama `dugotrajne groznice` (koju je stekao na obali Male Azije kada je svojevremeno krenuo u Carigrad). Na milanskom groblju je i sahranjen 13. februara 1787. godine, a srce mu je preneto u zavičaj.[18] Milutin Milanković navodi podatak da je sahranjen u Milanu u crkvi Santa Maria Podone.[26] Karijera Sveštenik je postao 1744. godine i odmah stupio na katedru za matematiku Kolegijuma u Rimu. Treba znati da je on još kao student teološke nauke započeo praksu, radeći kao učitelj na nižim razredima iste ustanove. U Rimu ostaje kao predavač do 1759. godine, kada napušta Rim. On je godinu dana ranije shvatio da je jezuitski red u krizi i da mora negde da se skloni. Boravi 1760. godine u Parizu, a zatim u London. Posle kratkog boravka i istraživanja u Carigradu 1761. godine vraća se u Italiju 1763. godine. Nakon jednogodišnjeg bavljenja u Rimu, postaje 1764. godine profesor matematike na Univerzitetu u Paviji. Između 1765-1772. godine živi u Milanu gde osniva Milansku opservatoriju, i postaje njen prvi direktor. Kada je ukinut jezuitski red ostaje obični sveštenik i seli se 1773. godine u Pariz. Kao šef marinske optike na pariskoj Sorboni i francuski podanik provodi osam godina. Odatle kreće 1782. godine poslednji put u Italiju. Naučni rad Portret Ruđera Boškovića nepoznatog autora, 1765. Bošković je kao ugledni matematičar, profesor i naučnik pozivan je da rešava neke probleme svog vremena. Tako je 1742. godine uvršten u tročlanu komisiju koja je utvrđivala uzroke pukotine na velikoj kupoli vatikanske crkve Sv. Petra. Traženo je drugom prilikom njegovo stručno mišljenje u vezi kanalisanja reke Tibar.[27] Papa ga opet angažuje 1750. godine, sada da izmeri dužinu meridijanskog stepena u papinoj državi. Godine 1756. ga je angažovao austrijski car Franc I da presudi u sporu oko reka i plovidbe između grada Luke i Toskane. U Beču je u to vreme za caricu Mariju Tereziju, pomagao oko popravki na zgradi Dvorske biblioteke. Od 1736. godine, redovno objavljuje godišnje po nekoliko stručnih rasprava. Spada u red tada najplodnijih naučnika, kada je reč o pisanju. Objavio je 70 radova, od kojih najviše su to oni iz matematike (19), astronomije (15) i fizike (28), a ostalo su dela poetska, astronomska ili putopisna.[28] U zrelom dobu on je nadaleko poznat i priznat; javlja se kao član više Akademija – londonske, pariske, rimske. Napisao je delo Putopis od Carigrada do Poljske, koja se odnosi na jedno njegovo naučno putovanje. On se 1762. godine kao član engleskog naučnog Kraljevskog društva uputio tom trasom, da bi na terenu posmatrao `prolaz Venere ispred sunčevog diska`.[29] Krenuo je za Petrograd, ali zbog slabog zdravlja nije stigao dalje od Poljske. Putopis je prvi put objavljen na italijanskom jeziku 1784. godine. Ruđer Bošković je, između ostalog, tvorac i jedinstvenog zakona sile, pretpostavljajući da postoji ne samo privlačenje (Njutnov zakon) nego i odbijanje u naizmeničnom menjanju na malim rastojanjima među telima. Smatrao je da je elementarna čestica bez dimenzija izvor sile, a vreme i prostor je, nasuprot Njutnu smatrao relativnim, pa se s pravom može nazvati pretečom Alberta Ajnštajna. Pronašao je dva geometrijska metoda za određivanje elemenata Sunčeve rotacije na osnovu posmatranja položaja tri tijela, zatim je izračunao dimenzije i spljoštenost Zemlje. Otkrio je geometrijski model izračunavanja putanja kometa. U geologiji je značajan jer je pisao o kompenzaciji masa unutar gora i tako postavio temelje kasnijem razvoju teorije izostazije. Regionalne poremećaje sile teže tumačio je razlikom u gustini gornjih i donjih delova Zemljine kore. U domenu klasične fizike, formulisao je jedinstveni zakon svih sila. Pretpostavio je postojanje, ne samo privlačnih, nego i odbojnih sila. Svojim idejama o relativnosti prostora i vremena je bio preteča Ajnštajnove teorije relativnosti. Objavio je veliki broj radova iz sferne trigonometrije i statističkih metoda u fizici: Theoria philosophiae naturalis redakta ad unicam legem virium in natura existentium, Opera partinentia ad opticam et astronomia, Elementorum universae matheseos, O morskoj plimi, Teorija konusnih preseka, Elementi matematike itd. Nasleđe Ulica u Milanu koja nosi ime po Boškoviću Srpski studenti u Parizu osnovali su 1917. godine Književno društvo „Ruđer Bošković”.[30] Bošković je uticao na Ničea, koji je pisao o njemu u S one strane dobra i zla.[31] Mihajlo Pupin je naručio njegov portret od slikar Vlahe Bukovca i zapisao - Ne može srpski narod ostati bez lika jednog od svojih najvećih sinova.

Prikaži sve...
1,190RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Sadržaj: Leibnizova monadološka metafizika I. Razmatranja o spoznaji, istini i idejama II. O univerzalnoj sintezi i analizi ili o metodi istraživanja i suđenja III. O načelu kontinuiteta IV. Primjedbe uz opći dio Descartesovih načela V. Protiv Descartesa VI. Opaske k Spinozinoj etici VII. Razmatranja o nauci o jednom jedinom sveobuhvatnom duhu VIII. Razmatranja o životnim principima i o plastičnim prirodama IX. O načelu kontinuiteta Iz jednog Leibnizova pisma Varignonu X. Rasprava o metafizici XI. Nekoliko Leibnizovih pisama Arnauldu XII. Novi sistem prirode i zajednice supstancija kao i sjedinjenja duše i tijela XIII. O prestabiliranoj harmoniji XIV. Odgovor na razmatranje o sistemu prestabilirane harmonije, u drugom izdanju Kritičkog rječnika g, Baylea, u članku Rorarius Dodatak pismo H. Bayleu XV. Načela prirode i milosti utemeljena na umu . XVI. Monadologija Teze filozofije ili teze napisane u čast princa Eugena 1714. XVII. O mudrosti XVIII. O slobodi XIX. Fragmenti iz dopisivanja između Leibniza i Varignona Gottfried Wilhelm Freiherr (baron) von Leibniz; Lajpcig, 1. jul 1646 — Hanover, 14. novembar 1716), bio je nemački filozof, matematičar, pronalazač, pravnik, istoričar, diplomata i politički savetnik. Dao je značajan doprinos u optici i mehanici. Smatra se poslednjim čovekom enciklopedijskog znanja zapadne civilizacije. Stekao je obrazovanje iz prava i filozofije, radio je kao sekretar u dvema najpoznatijim plemićkim porodicama u Nemačkoj (od kojih je jedna tokom njegovog službovanja postala engleska kraljevska porodica). Zauzima podjednako značajno mesto kako u istoriji filozofije tako i u istoriji matematike. Ustanovio je infinitezimalni račun (kalkulus, matematička analiza) nezavisno od Njutna, kao i binarni sistem koji predstavlja osnovu moderne računarske tehnologije. U filozofiji ostaće najpoznatiji po optimizmu, npr. njegov zaključak da je Bog stvorio najbolji svet od svih mogućih svetova. Lajbnic je dao veliki doprinos u fizici (optici i mehanici) i tehnologiji, kao i, što će se kasnije utvrditi, biologiji, medicini, geologiji, teoriji verovatnoće, psihologiji, informatici. Pisao je na latinskom, francuskom i nemačkom i to o politici, pravu, etici, teologiji, istoriji i filologiji. Iako je mnogo pisao, malo toga je objavljeno. Sin luteranskog profesora moralne filozofije Fridriha, Lajbnic ja preko biblioteke svoga oca razvio interesovanje za širok krug predmeta. Sa 12 godina je naučio latinski bez ičije pomoći. Sa samo 14 godina je upisao univerzitet u Lajpcigu, a potom je učio u Jeni i Altdorfu, gde je 1666. godine stekao doktorat iz prava sa samo dvadeset godina. Lajbnicov talenat će se višestruko ispoljiti kako u pravu, religiji, diplomatiji, filozofiji, tako i u matematici. Rad Karijeru je započeo kao advokat i diplomata, u početku radeći za izbornog kneza od Majnca godine 1667. i na tom poslu je izvršio kodifikaciju zakonskih propisa grada. Radio je i za vojvode Braunšvajg – Lineburg kao bibliotekar i savetnik (1676 – 1716.). Godine 1700. pomogao je pri osnivanju Berlinske akademije nauka i postao njen prvi predsednik. Tokom putovanja u Pariz 1673. i 1676. godine, Kristijan Hajgens ga je zainteresovao za tekući rad u matematici i Lajbnic se bavio ovim radom u svojim slobodnim trenucima, da bi ostvario sjajna otkrića kako u infinitezimalnom računu (nezavisno od Njutna), tako i u kombinatoričkoj analizi, diferencijalnom i integralnom računu. U isto to vreme Lajbnic je bio veoma zauzet uspostavljanjem zakonskih prava legitimnih i mnogih nelegitimnih članova domaćinstva tri izborna kneza kojima je redom služio. Često u pokretu i pomno beležeći svoje misli o mnogim stvarima, on se istovremeno bavio diplomatijom i pravljenjem planova za francusku invaziju na Egipat. Takođe, angažovao se u neuspešnom pokušaju da ujedini katoličku i protestantsku crkvu 1683. Kada je njegov prvi poslodavac, izborni knez oa Hanovera, bio na putu da postane Džordž I od Engleske, Lajbnic je otpušten i ostavljen da piše istoriju porodice Brunsvik. Tokom svog boravka u Parizu značajno je proširio znanja iz matematike i fizike, susreo se sa vodećim francuskim filozofima toga vremena i proučavao je dela Dekarta i Paskala. 1674. godine je počeo da radi na infinitezimalnom računu, a najraniji podaci o upotrebi ovog računa nalaze se u njegovim beleškama iz 1675. Do 1677. je razradio koherentan sistem infinitezimalnog računa, ali ga nije objavio sve do 1684. godine. Lajbnicova najznačajnija matematička otkrića su objavljena između 1682. i 1692, uglavnom u časopisu Acta Eruditorum, koji su on i Oto Menke osnovali 1682. godine. Ovaj časopis je imao značajnu ulogu u unapređenju Lajbnicove reputacije matematičara i naučnika, što je doprinelo da bude cenjen i u diplomatiji, istoriji, teologiji i filozofiji. Godine 1711. Džon Kil je pišući za časopis Kraljevskog društva i uz Njutnovu podršku optužio Lajbnica za plagiranje Njutnovog infinitezimalnog računa, što je dovelo do javne rasprave o tome ko je prvi otkrio infinitezimalni račun. Tek su istoričari matematike od 1900. godine pa nadalje istakli značajne razlike između Lajbnicove i Njutnove verzije infinitezimalnog računa i time dokazali da Lajbnic nije plagirao Njutna. Filozofija Lajbnic je nastojao da izmiri materijalizam i spiritualizam, ali je ostao spiritualist. Razumu je pridavao odlučnu prednost u odnosu na čula. Najpoznatije mu je učenje o monadama. Lajbnic daje uvid „da jedna supstanca uopšte ne može na prirodan način biti nedelatna“. Po njemu je neko saznanje ili tamno ili jasno, a jasno, opet, ili adekvatno ili neadekvatno, simboličko ili intuitivno; savršeno saznanje je istovremeno adekvatno i intuitivno. Lajbnic je kategorije omeđio na šest: supstancija, kvantitet, kvalitet, relacija, akcija i pasija (trpljenje). Monade Prostorno – vremenski svet materijalnih stvari i bića sastoji se iz monada, od kojih ne postoje dve apsolutno iste, ni dva ista trenutka u životu jedne monade (princip identiteta nerazlučivog). Monade su duhovne suštine, a izvor im je u Bogu kao najvišoj monadi. Bog je udesio da unutrašnja aktivnost svake monade bude u harmoniji sa aktivnošću svih ostalih (učenje o prestabiliranoj harmoniji), pa je svet savrešeno jedinstven iako ga čine individualne supstancije. Između monada ne postoje uzročno – posledični odnosi, iako je svako stanje monade uzrok njenom sledećem stanju, a istovremeno posledica prethodnog. Lajbnic naziva ljudsku dušu duhovnim automatom, jer ona sva svoja stanja razvija iz same sebe. On je pojam duše izrazio s idealističkog stanovišta, a njemu su se pridružili svi drugi noviji idealisti. Prema Lajbnicu se stvarnost sastoji iz jednog beskonačnog broja bestelesnih prostih pojedinačnih supstancija, čija je unutarnja suština snaga predstavljanja. Ali takve suštine su duše, a Lajbnic ih otuda naziva ames ili, na osnovu njihove jedinstvenosti, monade. Otuda kod Lajbnica samo duše čine stvarnost: sve monade je putem temeljnih razlika snage predstavljanja i manjeg i većeg savršenstva koje počiva na njoj tvorac doveo u jednom zauvek uspostavljenu harmoniju (prestabilizovana harmonija); svaka je stvorena s obzirom na drugu. Ako je u jednoj monadi toliko savršenstva koliko u drugima nesavršenosti, onda one sveukupno obrazuju agregat monada, od kojih prva funkcioniše kao centralna monada. Čulna predstava takvog agregata monada shvata takav agregat kao telo. Ljudska duša je posebno jedna takva centralna monada koja putem razmene svojih predstava stoji takođe u uzajamnim odnosima prema svom telu i u sebi uključuje razvoj putem oticanja i priticanja delova. Lajbnicu se priključuje Kristijan Vulf za koga je duša prosta supstanija sa snagom da sebi predstavlja svet (vis repraesentativa universi). Lajbnic naglašava da dve stvari nikada nisu potpuno jednake i da uvek postoje nesvesna čulna opažanja (percepcije) koja određuju delovanje. Njegov princip identiteta nerazlučivog tvrdi da su ličnost X i ličnost Y identične ako i samo ako dele ista suštinska nerelacijska svojstva. Njegova „Teodiceja“ (1710.) pokušava da pomiri dobrotu o Bogu sa postojanjem zla u svetu, pretpostavljajući da je samo Bog savršen i da je ovaj svet „najbolji od svih mogućih svetova“. Ovaj stav ismejan je u komičnom Volterovom romanu Kandid. Logika Lajbnic je izmislio univerzalni jezik za logiku i kao mladić počeo da proučava simboličku logiku. Od njega potiču prvi pokušaji da se logika formuliše kao aksiomatski sistem. Takođe je preduzeo prve pokušaje da logiku obrađuje u okviru formalnih računa. Izraz koji je Lajbnic koristio za simboličku logiku koju je razvio je characteristica universlis, „opšta odlika ili veština označavanja“. Lajbnic je verovao da se ljudsko razmišljanje, rezonovanje može svesti na račun vrsta, klasa i da takav račun može da razreši mnoga neslaganja, razlike u mišljenjima: „Jedini način da ispravimo naše mišljenje je da ga učinimo opipljivim, stvarnim poput matematičara, tako da kad otkrijemo našu grešku, i kada postoje sporovi, neslaganja među ljudima možemo prosto reći: Hajde da izračunamo (calculemus) bez dalje prepirke i da vidimo ko je u pravu“. Formalna logika Lajbnic je najvažniji logičar od vremena Aristotela pa do 1847. godine, kada su Džordž Bul i Augustus De Morgan izdali knjige koje ujedno predstavljaju početak moderne formalne logike. Lajbnic je izneo glavne karakteristike onoga što nazivamo konjunkcija, disjunkcija, negacija, identitet, podskupovi i prazni skupovi. Osnovni principi Lajbnicove logike, i opravdano cele njegove filozofije mogu se svesti na dva osnovna principa: sve naše ideje su sastavljene od vrlo malog broja prostih ideja koje čine alfabet ljudske misli (ljudskog razmišljanja), kompleksne (složene) ideje nastaju iz ovih prostih ideja jednoobraznom i simetričnom kombinacijom, analogno aritmetičkom množenju. Lajbnic nije objavio ništa o formalnoj logici za života; većina onoga što je napisano na tu temu postoji u obliku radnih beleški. Matematika Iako se matematičko shvatanje funkcije implicitno koristilo u trigonometriji i logaritamskim tablicama, koje su postojale u to vreme, Lajbnic ih je prvi 1692. i 1694. godine primenio eksplicitno kako bi označio neki od više geometrijskih koncepata koji potiču od krive, kao što su apscisa, ordinata, tangenta, tetiva i vertikala. U XVIII veku „funkcija“ je izgubila ovakve geometrijske asocijacije. Lajbnic je prvi uvideo da se koeficijenti sistema linearne jednakosti mogu predstaviti kao niz, poznatiji kao matrica, koji se može iskoristiti da bi se pronašlo rešenje sistema. Ovaj metod je kasnije nazvan Gausova eliminacija. Nakon što je postavio svoju konstrukciju infinitezimalnog računa počela je njegova žestoka diskusija s Njutnom o pravu prvenstva. Lajbnic je svoj rad objavio posle Njutna, nakon 1665. godine, ali nezavisno od njega. Notaciju koju danas koristimo u infinitezimalnom računu dugujemo Lajbnicu. Manji deo njegovog rada bio je o beskonačnim nizovima, gde je 1674. godine otkrio relaciju između π i svih drugih nepernih brojeva: π / 4 = 1 – 1/3 + 1/5 – 1/7 + 1/9... koju je ranije pronašao Gregori. U matematici Lajbnic je istraživao ideju o univerzalnom matematičko – logičkom jeziku zasnovanom na binarnom sistemu. Suprotno od Lajbnicove ideje, sve mašine za računanje koje su kasnije konstruisane koristile su dekadni sistem za računanje. 1672. godine Lajbnic je izumeo mašinu za računanje koja je bila daleko bolja od Paskalove koja je mogla samo da sabira i oduzima; Lajbnicova je mogla još i da množi, deli i računa kvadratni koren. Lajbnic je 1697. godine prvi predstavio binarni sistem, onosno brojevni sistem u kojem se uz pomoć samo dve cifre 0 i 1 može prikazati svaki broj (dok se u običnom dekadnom sistemu koristi deset cifara 0 ..... 9). Dekadno 1 se pri tom u binarnom sistemu pojavljuje kao 1 (1x2°), 2 kao 10 (1x2¹ + 0x2°), 3 kao 11 (1x2¹ + + 1x2°), 4 kao 100 (1h2² + 0x2¹ + 0x2°) itd. U modernoj obradi podataka sprovodi se binarni sistem, stoga što se njegove cifre 0 i 1 lako pridružuju električnim stanjima UKLjUČENO i ISKLjUČENO, a time se svaki broj može predstaviti nekim nizom takvih stanja. Pojam diferencijal uveo je Lajbnic za označavanje lokalne (tačkaste) linearne aproksimacije: pri obrazovanju diferencijalnog količnika dy:dx = f(x); izrazi dy i dx označavaju se kao diferencijali. Infinitezimalni račun Lajbnic je zaslužan, zajedno sa Isakom Njutnom, za otkriće infinitezimalnog računa. Prema Lajbnicovim beleškama do presudnog otkrića došlo je 11. novembra 1675. godine kada je po prvi put primenio integralni račun kako bi pronašao domen funkcije y = x. Lajbnic je uveo neke notacije koje su se zadržale do danas, kao što su recimo znak ∫ (koji potiče od latinske reči summa) i d koje označava diferencijale (od latinske reči differentia). Lajbnic o svom infinitezimalnom računu nije objavio ništa sve do 1684. godine. Slobodno se koristio matematičkim entitetima nazivajući ih infinitezimalima, sugerišući da oni imaju paradoksalne osobine (kvalitete). Fizika Lajbnic je izumeo (stvorio) novu teoriju kretanja (dinamike) zasnovanu na kinetičkoj energiji i potencijalnoj energiji, a koja se zalaže za to da je prostor relativan, dok Njutn smatra da je prostor apsolutan. Lajbnicova „vis viva“ („živa sila“) jeste nepromenljiva matematička osobina određenog mehaničkog sistema. Ona se može posmatrati kao poseban slučaj odražavanja energije. Filologija Lajbnic je bio zavidan student jezika, posebno zainteresovan za vokabular i gramatiku. Poricao je široko rasprostranjeno verovanje u hrišćanskom obrazovanju njegovog vremena, da je hebrejski prvobitni jezik ljudske rase. Bavio se poreklom slovenskih jezika, bio je svestan postojanja sanskrita kao i njegovog značaja, i fascinirao ga je klasičan kineski jezik. Priroda Prirodnonaučni pojam kontinuiteta prvi je odredio Aristotel. Do obuhvatnijeg značenja on dolazi kod Lajbnica u ubeđenju da priroda ne čini skokove (natura non facit saltus), da se sve upliće u celinu. Ovoj predstavi je dao izraz u takozvanom zakonu kontinuiteta (lex continui), pri čemu je primenom ovog zakona pobijao fiziku Dekarta i Malbranša. „Ništa se ne događa u jednom udaru, a jedno je od mojih najvažnijih načela da priroda nikad ne čini skokove. Ovaj sam stav nazvao zakonom kontinuiteta“, kaže Lajbnic. Moderna teorijska fizika od razvoja kvantne teorije i njenog uobličenja (kvantna mehanika), naprotiv, radije pak pretpostavlja diskontinualne, u smislu ovog navoda „skokovite“ prelaze od jednog u neko drugo stanje. Lajbnic je uveo pojam aktuelno beskonačnog koji je prihvatio i Imanuel Kant. Prvi je uveo pojam involucije (involution), što je po njemu razvoj prema smrti, nasuprot evoluciji, razvoj prema životu. Pravo Prema Lajbnicu celokupno pravo služi zajedničkom dobru, koje je on gledao kao održavanje i napredovanje univerzuma. U prvom redu samog božanskog svetskog poretka, u drugom redu ljudskog roda i u trećem redu države. Na kraju životnog puta Umro je zaboravljen, u Hanoveru 14. novembra 1716., savladan bolešću i usred spora oko svog pronalaska infinitezimalnog računa. Njegov grob obeležen je tek posle 50 godina, odnosno 1766....

Prikaži sve...
2,490RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Gottfried Wilhelm Leibniz Novi eseji o ljudskom razumevanju Gottfried Wilhelm Freiherr (baron) von Leibniz; Lajpcig, 1. jul 1646 — Hanover, 14. novembar 1716), bio je nemački filozof, matematičar, pronalazač, pravnik, istoričar, diplomata i politički savetnik. Dao je značajan doprinos u optici i mehanici. Smatra se poslednjim čovekom enciklopedijskog znanja zapadne civilizacije. Stekao je obrazovanje iz prava i filozofije, radio je kao sekretar u dvema najpoznatijim plemićkim porodicama u Nemačkoj (od kojih je jedna tokom njegovog službovanja postala engleska kraljevska porodica). Zauzima podjednako značajno mesto kako u istoriji filozofije tako i u istoriji matematike. Ustanovio je infinitezimalni račun (kalkulus, matematička analiza) nezavisno od Njutna, kao i binarni sistem koji predstavlja osnovu moderne računarske tehnologije. U filozofiji ostaće najpoznatiji po optimizmu, npr. njegov zaključak da je Bog stvorio najbolji svet od svih mogućih svetova. Lajbnic je dao veliki doprinos u fizici (optici i mehanici) i tehnologiji, kao i, što će se kasnije utvrditi, biologiji, medicini, geologiji, teoriji verovatnoće, psihologiji, informatici. Pisao je na latinskom, francuskom i nemačkom i to o politici, pravu, etici, teologiji, istoriji i filologiji. Iako je mnogo pisao, malo toga je objavljeno. Sin luteranskog profesora moralne filozofije Fridriha, Lajbnic ja preko biblioteke svoga oca razvio interesovanje za širok krug predmeta. Sa 12 godina je naučio latinski bez ičije pomoći. Sa samo 14 godina je upisao univerzitet u Lajpcigu, a potom je učio u Jeni i Altdorfu, gde je 1666. godine stekao doktorat iz prava sa samo dvadeset godina. Lajbnicov talenat će se višestruko ispoljiti kako u pravu, religiji, diplomatiji, filozofiji, tako i u matematici. Rad Karijeru je započeo kao advokat i diplomata, u početku radeći za izbornog kneza od Majnca godine 1667. i na tom poslu je izvršio kodifikaciju zakonskih propisa grada. Radio je i za vojvode Braunšvajg – Lineburg kao bibliotekar i savetnik (1676 – 1716.). Godine 1700. pomogao je pri osnivanju Berlinske akademije nauka i postao njen prvi predsednik. Tokom putovanja u Pariz 1673. i 1676. godine, Kristijan Hajgens ga je zainteresovao za tekući rad u matematici i Lajbnic se bavio ovim radom u svojim slobodnim trenucima, da bi ostvario sjajna otkrića kako u infinitezimalnom računu (nezavisno od Njutna), tako i u kombinatoričkoj analizi, diferencijalnom i integralnom računu. U isto to vreme Lajbnic je bio veoma zauzet uspostavljanjem zakonskih prava legitimnih i mnogih nelegitimnih članova domaćinstva tri izborna kneza kojima je redom služio. Često u pokretu i pomno beležeći svoje misli o mnogim stvarima, on se istovremeno bavio diplomatijom i pravljenjem planova za francusku invaziju na Egipat. Takođe, angažovao se u neuspešnom pokušaju da ujedini katoličku i protestantsku crkvu 1683. Kada je njegov prvi poslodavac, izborni knez oa Hanovera, bio na putu da postane Džordž I od Engleske, Lajbnic je otpušten i ostavljen da piše istoriju porodice Brunsvik. Tokom svog boravka u Parizu značajno je proširio znanja iz matematike i fizike, susreo se sa vodećim francuskim filozofima toga vremena i proučavao je dela Dekarta i Paskala. 1674. godine je počeo da radi na infinitezimalnom računu, a najraniji podaci o upotrebi ovog računa nalaze se u njegovim beleškama iz 1675. Do 1677. je razradio koherentan sistem infinitezimalnog računa, ali ga nije objavio sve do 1684. godine. Lajbnicova najznačajnija matematička otkrića su objavljena između 1682. i 1692, uglavnom u časopisu Acta Eruditorum, koji su on i Oto Menke osnovali 1682. godine. Ovaj časopis je imao značajnu ulogu u unapređenju Lajbnicove reputacije matematičara i naučnika, što je doprinelo da bude cenjen i u diplomatiji, istoriji, teologiji i filozofiji. Godine 1711. Džon Kil je pišući za časopis Kraljevskog društva i uz Njutnovu podršku optužio Lajbnica za plagiranje Njutnovog infinitezimalnog računa, što je dovelo do javne rasprave o tome ko je prvi otkrio infinitezimalni račun. Tek su istoričari matematike od 1900. godine pa nadalje istakli značajne razlike između Lajbnicove i Njutnove verzije infinitezimalnog računa i time dokazali da Lajbnic nije plagirao Njutna. Filozofija Lajbnic je nastojao da izmiri materijalizam i spiritualizam, ali je ostao spiritualist. Razumu je pridavao odlučnu prednost u odnosu na čula. Najpoznatije mu je učenje o monadama. Lajbnic daje uvid „da jedna supstanca uopšte ne može na prirodan način biti nedelatna“. Po njemu je neko saznanje ili tamno ili jasno, a jasno, opet, ili adekvatno ili neadekvatno, simboličko ili intuitivno; savršeno saznanje je istovremeno adekvatno i intuitivno. Lajbnic je kategorije omeđio na šest: supstancija, kvantitet, kvalitet, relacija, akcija i pasija (trpljenje). Monade Prostorno – vremenski svet materijalnih stvari i bića sastoji se iz monada, od kojih ne postoje dve apsolutno iste, ni dva ista trenutka u životu jedne monade (princip identiteta nerazlučivog). Monade su duhovne suštine, a izvor im je u Bogu kao najvišoj monadi. Bog je udesio da unutrašnja aktivnost svake monade bude u harmoniji sa aktivnošću svih ostalih (učenje o prestabiliranoj harmoniji), pa je svet savrešeno jedinstven iako ga čine individualne supstancije. Između monada ne postoje uzročno – posledični odnosi, iako je svako stanje monade uzrok njenom sledećem stanju, a istovremeno posledica prethodnog. Lajbnic naziva ljudsku dušu duhovnim automatom, jer ona sva svoja stanja razvija iz same sebe. On je pojam duše izrazio s idealističkog stanovišta, a njemu su se pridružili svi drugi noviji idealisti. Prema Lajbnicu se stvarnost sastoji iz jednog beskonačnog broja bestelesnih prostih pojedinačnih supstancija, čija je unutarnja suština snaga predstavljanja. Ali takve suštine su duše, a Lajbnic ih otuda naziva ames ili, na osnovu njihove jedinstvenosti, monade. Otuda kod Lajbnica samo duše čine stvarnost: sve monade je putem temeljnih razlika snage predstavljanja i manjeg i većeg savršenstva koje počiva na njoj tvorac doveo u jednom zauvek uspostavljenu harmoniju (prestabilizovana harmonija); svaka je stvorena s obzirom na drugu. Ako je u jednoj monadi toliko savršenstva koliko u drugima nesavršenosti, onda one sveukupno obrazuju agregat monada, od kojih prva funkcioniše kao centralna monada. Čulna predstava takvog agregata monada shvata takav agregat kao telo. Ljudska duša je posebno jedna takva centralna monada koja putem razmene svojih predstava stoji takođe u uzajamnim odnosima prema svom telu i u sebi uključuje razvoj putem oticanja i priticanja delova. Lajbnicu se priključuje Kristijan Vulf za koga je duša prosta supstanija sa snagom da sebi predstavlja svet (vis repraesentativa universi). Lajbnic naglašava da dve stvari nikada nisu potpuno jednake i da uvek postoje nesvesna čulna opažanja (percepcije) koja određuju delovanje. Njegov princip identiteta nerazlučivog tvrdi da su ličnost X i ličnost Y identične ako i samo ako dele ista suštinska nerelacijska svojstva. Njegova „Teodiceja“ (1710.) pokušava da pomiri dobrotu o Bogu sa postojanjem zla u svetu, pretpostavljajući da je samo Bog savršen i da je ovaj svet „najbolji od svih mogućih svetova“. Ovaj stav ismejan je u komičnom Volterovom romanu Kandid. Logika Lajbnic je izmislio univerzalni jezik za logiku i kao mladić počeo da proučava simboličku logiku. Od njega potiču prvi pokušaji da se logika formuliše kao aksiomatski sistem. Takođe je preduzeo prve pokušaje da logiku obrađuje u okviru formalnih računa. Izraz koji je Lajbnic koristio za simboličku logiku koju je razvio je characteristica universlis, „opšta odlika ili veština označavanja“. Lajbnic je verovao da se ljudsko razmišljanje, rezonovanje može svesti na račun vrsta, klasa i da takav račun može da razreši mnoga neslaganja, razlike u mišljenjima: „Jedini način da ispravimo naše mišljenje je da ga učinimo opipljivim, stvarnim poput matematičara, tako da kad otkrijemo našu grešku, i kada postoje sporovi, neslaganja među ljudima možemo prosto reći: Hajde da izračunamo (calculemus) bez dalje prepirke i da vidimo ko je u pravu“. Formalna logika Lajbnic je najvažniji logičar od vremena Aristotela pa do 1847. godine, kada su Džordž Bul i Augustus De Morgan izdali knjige koje ujedno predstavljaju početak moderne formalne logike. Lajbnic je izneo glavne karakteristike onoga što nazivamo konjunkcija, disjunkcija, negacija, identitet, podskupovi i prazni skupovi. Osnovni principi Lajbnicove logike, i opravdano cele njegove filozofije mogu se svesti na dva osnovna principa: sve naše ideje su sastavljene od vrlo malog broja prostih ideja koje čine alfabet ljudske misli (ljudskog razmišljanja), kompleksne (složene) ideje nastaju iz ovih prostih ideja jednoobraznom i simetričnom kombinacijom, analogno aritmetičkom množenju. Lajbnic nije objavio ništa o formalnoj logici za života; većina onoga što je napisano na tu temu postoji u obliku radnih beleški. Matematika Iako se matematičko shvatanje funkcije implicitno koristilo u trigonometriji i logaritamskim tablicama, koje su postojale u to vreme, Lajbnic ih je prvi 1692. i 1694. godine primenio eksplicitno kako bi označio neki od više geometrijskih koncepata koji potiču od krive, kao što su apscisa, ordinata, tangenta, tetiva i vertikala. U XVIII veku „funkcija“ je izgubila ovakve geometrijske asocijacije. Lajbnic je prvi uvideo da se koeficijenti sistema linearne jednakosti mogu predstaviti kao niz, poznatiji kao matrica, koji se može iskoristiti da bi se pronašlo rešenje sistema. Ovaj metod je kasnije nazvan Gausova eliminacija. Nakon što je postavio svoju konstrukciju infinitezimalnog računa počela je njegova žestoka diskusija s Njutnom o pravu prvenstva. Lajbnic je svoj rad objavio posle Njutna, nakon 1665. godine, ali nezavisno od njega. Notaciju koju danas koristimo u infinitezimalnom računu dugujemo Lajbnicu. Manji deo njegovog rada bio je o beskonačnim nizovima, gde je 1674. godine otkrio relaciju između π i svih drugih nepernih brojeva: π / 4 = 1 – 1/3 + 1/5 – 1/7 + 1/9... koju je ranije pronašao Gregori. U matematici Lajbnic je istraživao ideju o univerzalnom matematičko – logičkom jeziku zasnovanom na binarnom sistemu. Suprotno od Lajbnicove ideje, sve mašine za računanje koje su kasnije konstruisane koristile su dekadni sistem za računanje. 1672. godine Lajbnic je izumeo mašinu za računanje koja je bila daleko bolja od Paskalove koja je mogla samo da sabira i oduzima; Lajbnicova je mogla još i da množi, deli i računa kvadratni koren. Lajbnic je 1697. godine prvi predstavio binarni sistem, onosno brojevni sistem u kojem se uz pomoć samo dve cifre 0 i 1 može prikazati svaki broj (dok se u običnom dekadnom sistemu koristi deset cifara 0 ..... 9). Dekadno 1 se pri tom u binarnom sistemu pojavljuje kao 1 (1x2°), 2 kao 10 (1x2¹ + 0x2°), 3 kao 11 (1x2¹ + + 1x2°), 4 kao 100 (1h2² + 0x2¹ + 0x2°) itd. U modernoj obradi podataka sprovodi se binarni sistem, stoga što se njegove cifre 0 i 1 lako pridružuju električnim stanjima UKLjUČENO i ISKLjUČENO, a time se svaki broj može predstaviti nekim nizom takvih stanja. Pojam diferencijal uveo je Lajbnic za označavanje lokalne (tačkaste) linearne aproksimacije: pri obrazovanju diferencijalnog količnika dy:dx = f(x); izrazi dy i dx označavaju se kao diferencijali. Infinitezimalni račun Lajbnic je zaslužan, zajedno sa Isakom Njutnom, za otkriće infinitezimalnog računa. Prema Lajbnicovim beleškama do presudnog otkrića došlo je 11. novembra 1675. godine kada je po prvi put primenio integralni račun kako bi pronašao domen funkcije y = x. Lajbnic je uveo neke notacije koje su se zadržale do danas, kao što su recimo znak ∫ (koji potiče od latinske reči summa) i d koje označava diferencijale (od latinske reči differentia). Lajbnic o svom infinitezimalnom računu nije objavio ništa sve do 1684. godine. Slobodno se koristio matematičkim entitetima nazivajući ih infinitezimalima, sugerišući da oni imaju paradoksalne osobine (kvalitete). Fizika Lajbnic je izumeo (stvorio) novu teoriju kretanja (dinamike) zasnovanu na kinetičkoj energiji i potencijalnoj energiji, a koja se zalaže za to da je prostor relativan, dok Njutn smatra da je prostor apsolutan. Lajbnicova „vis viva“ („živa sila“) jeste nepromenljiva matematička osobina određenog mehaničkog sistema. Ona se može posmatrati kao poseban slučaj odražavanja energije. Filologija Lajbnic je bio zavidan student jezika, posebno zainteresovan za vokabular i gramatiku. Poricao je široko rasprostranjeno verovanje u hrišćanskom obrazovanju njegovog vremena, da je hebrejski prvobitni jezik ljudske rase. Bavio se poreklom slovenskih jezika, bio je svestan postojanja sanskrita kao i njegovog značaja, i fascinirao ga je klasičan kineski jezik. Priroda Prirodnonaučni pojam kontinuiteta prvi je odredio Aristotel. Do obuhvatnijeg značenja on dolazi kod Lajbnica u ubeđenju da priroda ne čini skokove (natura non facit saltus), da se sve upliće u celinu. Ovoj predstavi je dao izraz u takozvanom zakonu kontinuiteta (lex continui), pri čemu je primenom ovog zakona pobijao fiziku Dekarta i Malbranša. „Ništa se ne događa u jednom udaru, a jedno je od mojih najvažnijih načela da priroda nikad ne čini skokove. Ovaj sam stav nazvao zakonom kontinuiteta“, kaže Lajbnic. Moderna teorijska fizika od razvoja kvantne teorije i njenog uobličenja (kvantna mehanika), naprotiv, radije pak pretpostavlja diskontinualne, u smislu ovog navoda „skokovite“ prelaze od jednog u neko drugo stanje. Lajbnic je uveo pojam aktuelno beskonačnog koji je prihvatio i Imanuel Kant. Prvi je uveo pojam involucije (involution), što je po njemu razvoj prema smrti, nasuprot evoluciji, razvoj prema životu. Pravo Prema Lajbnicu celokupno pravo služi zajedničkom dobru, koje je on gledao kao održavanje i napredovanje univerzuma. U prvom redu samog božanskog svetskog poretka, u drugom redu ljudskog roda i u trećem redu države. Na kraju životnog puta Umro je zaboravljen, u Hanoveru 14. novembra 1716., savladan bolešću i usred spora oko svog pronalaska infinitezimalnog računa. Njegov grob obeležen je tek posle 50 godina, odnosno 1766....

Prikaži sve...
990RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Posveta u vidu nekog dijagrama na nultoj stranicu, sve ostalo uredno! Vladimir Devidé (Zagreb 3. svibnja 1925. - Zagreb, 22. kolovoza 2010.) hrvatski matematičar, japanolog, akademik i književnik. Realnu gimnaziju polazio je u Zagrebu i maturirao je s odličnim uspjehom 1944. Na Građevinskom odsjeku, Konstruktorskom smjeru Tehničkog fakulteta u Zagrebu diplomirao je s odličnim uspjehom 1951. godine. Doktorski rad Jedna klasa grupoida obranio je na Prirodoslovno-matematičkom fakultetu Sveučilišta u Zagrebu 1956. godine. Habilitirao je na Tehničkom fakultetu u Zagrebu 1956. Od 1952. do 1957. je asistent, a od 1957. do 1958. docent je na Elektrotehničkom fakultetu Sveučilišta u Zagrebu; od 1958. do 1960. je docent, od 1960. do 1965. je izvanredni profesor, a od tada pa do odlaska u mirovinu 1990. godine redoviti je profesor na Katedri za matematiku Strojarsko-brodograđevnog fakulteta Sveučilišta u Zagrebu. Od 1973. izvanredni je član JAZU, a od 1990. je redoviti član HAZU. Niz godina bio je član Association for Symbolic Logic, SAD. Od 1975. član je Odbora za Orijentalne studije JAZU. Od 1970. je član Društva hrvatskih književnika te od 1981. P.E.N. Centra Hrvatske. Od 1991. član je Haiku International Association, Japan, a od 2000. član je i savjetnik World Haiku Association te od 1999. počasni predsjednik Društva hrvatskih haiku pjesnika i počasni član Njemačkog haiku društva. Godine 1965. odlikovan je Ordenom rada sa zlatnim vijencem `za istaknute zasluge tijekom niza godina rada na području znanosti, kulture i prosvjete kao i za rezultate dobivene u odgoju stručnih i znanstvenih kadrova`. Godine 1969. primio je republičku nagradu `Ruđer Bošković` za rezultate dobivene na području matematike. Godine 1982. primio je Nagradu grada Zagreba za cjelokupni matematički rad, literarni rad i za knjigu `Matematika kroz kulture i epohe`. Godine 1977. primio je međunarodnu nagradu `Le Prix C.I.D.A.L.C` (Comité International pour la Diffusion des Arts et des Lettres par Cinema) za TV nastavni film `Matematika i umjetnost`, za `njegovu stilsku uglađenost, upotrebu posebnih mogućnosti TV-medija i realizaciju koja na zorni i intuitivni način objašnjava međuovisnost između umjetnosti i znanosti`. Godine 1983. dodijeljeno mu je od japanske vlade carsko odlikovanje `Kun-san-tô Zuihôshô (Orden svetoga blaga trećega stupnja) za zasluge u upoznavanju japanske kulture u nas. Godine 2003. primio je državnu nagradu Republike Hrvatske za životno djelo na području prirodnih znanosti (matematika). Godine 2004. primio je Priznanje japanskog Ministarstva prosvjete, kulture, športa, znanosti i tehnologije za istaknuti doprinos i međunarodno promicanje razumijevanja između Japana i Istočne Europe. Od srpnja 1961. do ožujka 1963. boravio je na studijskom usavršavanju iz područja matematičkih znanosti na japanskim sveučilištima Tokyo Daigaku, Toritsu Daigaku, Kôgyô Daigaku i Rikkyo Daigaku. Godine 1968. je gostujući profesor na sveučilištu Monash u Melbourneu, Australija, a 1971. je gostujući profesor na sveučilištu Ohio State University u Columbusu, Ohio, SAD. Godine 1965. je na tromjesečnom studijskom boravku u matematičkom institutu `Albert Einstein` u Jeruzalemu, Izrael, na poziv Instituta. Godine 1981. boravi 6 mjeseci u Japanu kao korisnik stipendije japanske Fundacije za kulturne veze s inozemstvom. Na kraćim je studijskim boravcima bio 1959. na Matematičkom institutu Poljske akademije nauka; 1976. na Varšavskom sveučilištu; 1966. na Praškom sveučilištu i Akademiji znanosti; 1965. na sveučilištu u Zapadnom Berlinu. Hrvatski veleposlanik u Japanu, i sam pjesnik, dr. Drago Štambuk (2005-2010) u Osaki je pri Konferenciji o azijskoj literaturi Librasia ( http://www.librasia.org) utemeljio nagradu za najbolji haiku na engleskom, a koju je nazvao `Vladimir Devide`. Prvu Devideovu nagradu dr. Štambuk proglasio je u Osaki u travnju 2011. a dobitnik je bio američki haijin Jim Kacian. Matematika (lat. [ars] mathematica < grč. μαϑηματιϰὴ [τέχνη]: matematičko [umijeće], prema μάϑημα: nauk; znanje),[3] je nauka koja izučava prirodu koristeći logiku.[4] Izučavane strukture najčešće potiču iz drugih prirodnih nauka, najčešće fizike, ali neke od struktura su definisane i izučavane radi internih razloga.[5][6][7] Istorijski, matematika se razvila iz potrebe da se obavljaju proračuni u trgovini, vrše mjerenja zemljišta i predviđaju astronomski događaji, i ove tri primjene se mogu dovesti u vezu sa grubom podjelom matematike u izučavanje strukture, prostora i izmjena.[8] Izučavanje strukture počinje sa brojevima, u početku sa prirodnim brojevima i cijelim brojevima.[9] Osnovna pravila za aritmetičke operacije su definisana u osnovnoj algebri a dodatna svojstva cijelih brojeva se izučavaju u teoriji brojeva. Izučavanje metoda za rješavanje jednačina je dovelo do razvoja apstraktne algebre koja između ostalog izučava prstenove i polja, strukture koje generalizuju osobine koje posjeduju brojevi.[10] Fizikalno važan koncept vektora se izučava u linearnoj algebri. Izučavanje prostora je počelo sa geometrijom, prvo Euklidovom geometrijom i trigonometrijom u pojmljivom trodimenzionalnom prostoru, ali se kasnije proširila na neeuklidske geometrije koje imaju centralnu ulogu u opštoj relativnosti. Moderna polja geometrije su diferencijalna geometrija i algebarska geometrija. Teorija grupa izučava koncept simetrije, i predstavlja vezu u u izučavanju prostora i strukture. Topologija povezuje izučavanje prostora i izmjene fokusirajući se na koncept kontinuiteta. Razumjevanje i opisivanje izmjena mjerljivih varijabli je glavna značajka prirodnih nauka, i diferencijalni račun je razvijen u te svrhe.[11] Centralni koncept kojim se opisuje promjena varijable je funkcija. Mnogi prirodni problemi su vodili uspostavljanju veze između vrijednosti i količine izmjene, i metodi razvijeni pri tome, se izučavaju u diferencijalnim jednačinama. Brojevi koji predstavljaju kontinualne veličine su realni brojevi, i detaljno izučavanje njihovih svojstava i funkcija je predmet analize. Zbog matematskih razloga, uveden je koncept kompleksnih brojeva koji se izučavaju u kompleksnoj analizi. Funkcionalna analiza je skoncetrisana na n-dimenzionalne prostore funkcija postavljajući time osnovu za izučavanje kvantne mehanike.[12] Radi pojašnjavanja i izučavanja osnova matematike, razvijene su oblasti teorija skupova, matematička logika i teorija modela. Važna oblast primjenjene matematike je vjerovatnoća i statistika koja se bavi izučavanjem i predviđanjem slučajnosti i slučajnih pojava. Numerička analiza izučava numeričke metode izračunavanja a diskretna matematika je zajedničko ime za oblasti matematike koje se koriste u računarskim naukama....

Prikaži sve...
1,290RSD
forward
forward
Detaljnije

Autor - osoba Leibniz, Gottfried Wilhelm, 1646-1716 = Lajbnic, Gotfrid Vilhelm, 1646-1716 Naslov Izabrani filozofski spisi / Gottfried Wilhelm Leibniz ; preveo Milivoj Mazulić ; [izbor, redakcija i predgovor Milan Kangrga] Vrsta građe knjiga Jezik hrvatski Godina 1980 Izdavanje i proizvodnja Zagreb : Naprijed, 1980 Fizički opis XXXII, 295 str. ; 20 cm Drugi autori - osoba Mazulić, Milivoj Kangrga, Milan, 1923-2008 = Kangrga, Milan, 1923-2008 Zbirka Filozofska biblioteka (Pl.) Napomene Leibnizova monadološka metafizika: str. VII-XXXII Napomene i bibliografske reference uz tekst predgovora. Predmetne odrednice Leibniz, Gottfried Wilhelm, 1646-1716 SADRŽAJ Leibnizova monadološka metafizika VII I. Razmatranja o spoznaji, istini i idejama 1 II. O univerzalnoj sintezi i analizi ili o metodi istraživanja i suđenja 8 III. O načelu kontinuiteta 18 IV. Primjedbe uz opći dio Descartesovih načela 26 V. Protiv Descartesa 62 VI. Opaske k Spinozinoj etici 66 VII. Razmatranja o nauci o jednom jedinom sveobuhvatnom duhu 83 VIII. Razmatranja o životnim principima i o plastičnim prirodama 95 IX. O načelu kontinuiteta Iz jednog Leibnizova pisma Varignonu 104 X. Rasprava o metafizici 108 XI. Nekoliko Leibnizovih pisama Arnauldu 153 XII. Novi sistem prirode i zajednice supstancija kao i sjedinjenja duše i tijela 209 XIII. O prestab`iliranoj harmoniji 220 XIV. Odgovor na razmatranje o sistemu prestabilirane harmonije, u drugom izdanju Kritičkog rječnika g. Baylea, u članku Rorarius 223 Dodatak pismo H. Bayleu 243 XV. Načela prirode i milosti utemeljena na umu 247 XVI. Monadologija Teze filozofije ili teze napisane u čast princa Eugena 1714 257 XVII. O mudrosti 279 XVIII. O slobodi 284 XIX. Fragmenti iz dopisivanja između Leibniza i Varignona 290 Gotfrid Vilhelm Lajbnic (nem. Gottfried Wilhelm Leibniz; Lajpcig, 1. jul 1646 – Hanover, 14. novembar 1716) bio je nemački polihistor. Lajbnic je bio filozof, matematičar, pronalazač, pravnik, istoričar, diplomata i politički savetnik. Dao je značajan doprinos u optici i mehanici. Smatra se poslednjim čovekom enciklopedijskog znanja zapadne civilizacije. Stekao je obrazovanje iz prava i filozofije, radio je kao sekretar u dvema najpoznatijim plemićkim porodicama u Nemačkoj (od kojih je jedna tokom njegovog službovanja postala engleska kraljevska porodica). Zauzima podjednako značajno mesto kako u istoriji filozofije tako i u istoriji matematike. Ustanovio je infinitezimalni račun (kalkulus, matematička analiza) nezavisno od Njutna,[3] kao i binarni sistem koji predstavlja osnovu moderne računarske tehnologije. U filozofiji ostaće najpoznatiji po optimizmu, npr. njegov zaključak da je Bog stvorio najbolji svet od svih mogućih svetova. Lajbnic je dao veliki doprinos u fizici (optici i mehanici) i tehnologiji, kao i, što će se kasnije utvrditi, biologiji, medicini, geologiji, teoriji verovatnoće, psihologiji, informatici. Pisao je na latinskom, francuskom i nemačkom i to o politici, pravu, etici, teologiji, istoriji i filologiji. Iako je mnogo pisao, malo toga je objavljeno. Biografija Sin luteranskog profesora moralne filozofije Fridriha, Lajbnic je preko biblioteke svoga oca razvio interesovanje za širok krug predmeta. Sa 12 godina je naučio latinski bez ičije pomoći. Sa samo 14 godina je upisao univerzitet u Lajpcigu, a potom je učio u Jeni i Altdorfu, gde je 1666. godine stekao doktorat iz prava sa samo dvadeset godina. Lajbnicov talenat će se višestruko ispoljiti kako u pravu, religiji, diplomatiji, filozofiji, tako i u matematici. Umro je zaboravljen, u Hanoveru 14. novembra 1716. godine, savladan bolešću i usred spora oko svog pronalaska infinitezimalnog računa. Njegov grob obeležen je tek posle 50 godina, odnosno 1766. godine. Rad Karijeru je započeo kao advokat i diplomata, u početku radeći za izbornog kneza od Majnca tokom 1667. godine i na tom poslu je izvršio kodifikaciju zakonskih propisa grada. Radio je i za vojvode Braunšvajg – Lineburg kao bibliotekar i savetnik (1676–1716). Godine 1700. pomogao je pri osnivanju Berlinske akademije nauka i postao njen prvi predsednik. Tokom putovanja u Pariz 1673. i 1676. godine, Kristijan Hajgens ga je zainteresovao za tekući rad u matematici i Lajbnic se bavio ovim radom u svojim slobodnim trenucima, da bi ostvario sjajna otkrića kako u infinitezimalnom računu (nezavisno od Njutna), tako i u kombinatoričkoj analizi, diferencijalnom i integralnom računu. U isto to vreme Lajbnic je bio veoma zauzet uspostavljanjem zakonskih prava legitimnih i mnogih nelegitimnih članova domaćinstva tri izborna kneza kojima je redom služio. Često u pokretu i pomno beležeći svoje misli o mnogim stvarima, on se istovremeno bavio diplomatijom i pravljenjem planova za francusku invaziju na Egipat. Takođe, angažovao se u neuspešnom pokušaju da ujedini katoličku i protestantsku crkvu 1683. Kada je njegov prvi poslodavac, izborni knez od Hanovera, bio na putu da postane Džordž I od Engleske, Lajbnic je otpušten i ostavljen da piše istoriju porodice Brunsvik. Tokom svog boravka u Parizu značajno je proširio znanja iz matematike i fizike, susreo se sa vodećim francuskim filozofima toga vremena i proučavao je dela Dekarta i Paskala. Godine 1674. je počeo da radi na infinitezimalnom računu, a najraniji podaci o upotrebi ovog računa nalaze se u njegovim beleškama iz 1675. godine. Do 1677. godine je razradio koherentan sistem infinitezimalnog računa, ali ga nije objavio sve do 1684. godine. Lajbnicova najznačajnija matematička otkrića su objavljena između 1682. i 1692. godine, uglavnom u časopisu Acta Eruditorum, koji su on i Oto Menke osnovali 1682. godine. Ovaj časopis je imao značajnu ulogu u unapređenju Lajbnicove reputacije matematičara i naučnika, što je doprinelo da bude cenjen i u diplomatiji, istoriji, teologiji i filozofiji. Godine 1711. Džon Kil je pišući za časopis Kraljevskog društva i uz Njutnovu podršku optužio Lajbnica za plagiranje Njutnovog infinitezimalnog računa, što je dovelo do javne rasprave o tome ko je prvi otkrio infinitezimalni račun. Tek su istoričari matematike od 1900. godine pa nadalje istakli značajne razlike između Lajbnicove i Njutnove verzije infinitezimalnog računa i time dokazali da Lajbnic nije plagirao Njutna. Filozofija Lajbnic je nastojao da izmiri materijalizam i spiritualizam, ali je ostao spiritualist. Razumu je pridavao odlučnu prednost u odnosu na čula. Najpoznatije mu je učenje o monadama. Lajbnic daje uvid „da jedna supstanca uopšte ne može na prirodan način biti nedelatna“. Po njemu je neko saznanje ili tamno ili jasno, a jasno, opet, ili adekvatno ili neadekvatno, simboličko ili intuitivno; savršeno saznanje je istovremeno adekvatno i intuitivno. Lajbnic je kategorije omeđio na šest: supstancija, kvantitet, kvalitet, relacija, akcija i pasija (trpljenje). Monade Prostorno – vremenski svet materijalnih stvari i bića sastoji se iz monada, od kojih ne postoje dve apsolutno iste, ni dva ista trenutka u životu jedne monade (princip identiteta nerazlučivog). Monade su duhovne suštine, a izvor im je u Bogu kao najvišoj monadi. Bog je udesio da unutrašnja aktivnost svake monade bude u harmoniji sa aktivnošću svih ostalih (učenje o prestabilizovanoj harmoniji), pa je svet savršeno jedinstven iako ga čine individualne supstancije. Između monada ne postoje uzročno – posledični odnosi, iako je svako stanje monade uzrok njenom sledećem stanju, a istovremeno posledica prethodnog. Lajbnic naziva ljudsku dušu duhovnim automatom, jer ona sva svoja stanja razvija iz same sebe. On je pojam duše izrazio s idealističkog stanovišta, a njemu su se pridružili svi drugi noviji idealisti. Prema Lajbnicu se stvarnost sastoji iz jednog beskonačnog broja bestelesnih prostih pojedinačnih supstancija, čija je unutrašnja suština snaga predstavljanja. Ali takve suštine su duše, a Lajbnic ih otuda naziva ames ili, na osnovu njihove jedinstvenosti, monade. Otuda kod Lajbnica samo duše čine stvarnost: sve monade je putem temeljnih razlika snage predstavljanja i manjeg i većeg savršenstva koje počiva na njoj tvorac doveo u jednom zauvek uspostavljenu harmoniju (prestabilizovana harmonija); svaka je stvorena s obzirom na drugu. Ako je u jednoj monadi toliko savršenstva koliko u drugima nesavršenosti, onda one sveukupno obrazuju agregat monada, od kojih prva funkcioniše kao centralna monada. Čulna predstava takvog agregata monada shvata takav agregat kao telo. Ljudska duša je posebno jedna takva centralna monada koja putem razmene svojih predstava stoji takođe u uzajamnim odnosima prema svom telu i u sebi uključuje razvoj putem oticanja i priticanja delova. Lajbnicu se priključuje Kristijan Vulf za koga je duša prosta supstancija sa snagom da sebi predstavlja svet (vis repraesentativa universi). Lajbnic naglašava da dve stvari nikada nisu potpuno jednake i da uvek postoje nesvesna čulna opažanja (percepcije) koja određuju delovanje. Njegov princip identiteta nerazlučivog tvrdi da su ličnost X i ličnost Y identične ako i samo ako dele ista suštinska nerelacijska svojstva. Njegova „Teodiceja“ (1710) pokušava da pomiri dobrotu o Bogu sa postojanjem zla u svetu, pretpostavljajući da je samo Bog savršen i da je ovaj svet „najbolji od svih mogućih svetova“. Ovaj stav ismejan je u komičnom Volterovom romanu Kandid. Logika Lajbnic je izmislio univerzalni jezik za logiku i kao mladić počeo da proučava simboličku logiku. Od njega potiču prvi pokušaji da se logika formuliše kao aksiomatski sistem. Takođe je preduzeo prve pokušaje da logiku obrađuje u okviru formalnih računa. Izraz koji je Lajbnic koristio za simboličku logiku koju je razvio je characteristica universlis, „opšta odlika ili veština označavanja“. Lajbnic je verovao da se ljudsko razmišljanje, rezonovanje može svesti na račun vrsta, klasa i da takav račun može da razreši mnoga neslaganja, razlike u mišljenjima: „Jedini način da ispravimo naše mišljenje je da ga učinimo opipljivim, stvarnim poput matematičara, tako da kad otkrijemo našu grešku, i kada postoje sporovi, neslaganja među ljudima možemo prosto reći: Hajde da izračunamo (calculemus) bez dalje prepirke i da vidimo ko je u pravu“. Formalna logika Lajbnic je najvažniji logičar od vremena Aristotela pa do 1847. godine, kada su Džordž Bul i Augustus De Morgan izdali knjige koje ujedno predstavljaju početak moderne formalne logike. Lajbnic je izneo glavne karakteristike onoga što nazivamo konjunkcija, disjunkcija, negacija, identitet, podskupovi i prazni skupovi. Osnovni principi Lajbnicove logike, i opravdano cele njegove filozofije mogu se svesti na dva osnovna principa: sve naše ideje su sastavljene od vrlo malog broja prostih ideja koje čine alfabet ljudske misli (ljudskog razmišljanja), kompleksne (složene) ideje nastaju iz ovih prostih ideja jednoobraznom i simetričnom kombinacijom, analogno aritmetičkom množenju. Lajbnic nije objavio ništa o formalnoj logici za života; većina onoga što je napisano na tu temu postoji u obliku radnih beleški. Matematika Iako se matematičko shvatanje funkcije implicitno koristilo u trigonometriji i logaritamskim tablicama, koje su postojale u to vreme, Lajbnic ih je prvi 1692. i 1694. godine primenio eksplicitno kako bi označio neki od više geometrijskih koncepata koji potiču od krive, kao što su apscisa, ordinata, tangenta, tetiva i vertikala. U 18. veku „funkcija“ je izgubila ovakve geometrijske asocijacije. Lajbnic je prvi uvideo da se koeficijenti sistema linearne jednakosti mogu predstaviti kao niz, poznatiji kao matrica, koji se može iskoristiti da bi se pronašlo rešenje sistema. Ovaj metod je kasnije nazvan Gausova eliminacija. Nakon što je postavio svoju konstrukciju infinitezimalnog računa počela je njegova žestoka diskusija s Njutnom o pravu prvenstva. Lajbnic je svoj rad objavio posle Njutna, nakon 1665. godine, ali nezavisno od njega. Notaciju koja se danas koristimo u infinitezimalnom računu potiče od Lajbnica. Manji deo njegovog rada bio je o beskonačnim nizovima, gde je 1674. godine otkrio relaciju između π i svih drugih neparnih brojeva: π / 4 = 1 – 1/3 + 1/5 – 1/7 + 1/9... koju je ranije pronašao Dejvid Gregori. U matematici Lajbnic je istraživao ideju o univerzalnom matematičko – logičkom jeziku zasnovanom na binarnom sistemu. Suprotno od Lajbnicove ideje, sve mašine za računanje koje su kasnije konstruisane koristile su dekadni sistem za računanje. Godine 1672. Lajbnic je izumeo mašinu za računanje koja je bila daleko bolja od Paskalove koja je mogla samo da sabira i oduzima; Lajbnicova je mogla još i da množi, deli i računa kvadratni koren. Lajbnic je 1697. godine prvi predstavio binarni sistem, odnosno brojevni sistem u kojem se uz pomoć samo dve cifre 0 i 1 može prikazati svaki broj (dok se u običnom dekadnom sistemu koristi deset cifara 0 ..... 9). Dekadno 1 se pritom u binarnom sistemu pojavljuje kao 1 (1x2°), 2 kao 10 (1x2¹ + 0x2°), 3 kao 11 (1x2¹ + + 1x2°), 4 kao 100 (1h2² + 0x2¹ + 0x2°) itd. U modernoj obradi podataka sprovodi se binarni sistem, stoga što se njegove cifre 0 i 1 lako pridružuju električnim stanjima UKLJUČENO i ISKLJUČENO, a time se svaki broj može predstaviti nekim nizom takvih stanja. Pojam diferencijal uveo je Lajbnic za označavanje lokalne (tačkaste) linearne aproksimacije: pri obrazovanju diferencijalnog količnika dy:dx = f(x); izrazi dy i dx označavaju se kao diferencijali. Infinitezimalni račun Lajbnic je zaslužan, zajedno sa Isakom Njutnom, za otkriće infinitezimalnog računa. Prema Lajbnicovim beleškama do presudnog otkrića došlo je 11. novembra 1675. godine kada je po prvi put primenio integralni račun kako bi pronašao domen funkcije y = x. Lajbnic je uveo neke notacije koje su se zadržale do danas, kao što su recimo znak ∫ (koji potiče od latinske reči summa) i d koje označava diferencijale (od latinske reči differentia). Lajbnic o svom infinitezimalnom računu nije objavio ništa sve do 1684. godine. Slobodno se koristio matematičkim entitetima nazivajući ih infinitezimalima, sugerišući da oni imaju paradoksalne osobine (kvalitete). Fizika Lajbnic je izumeo (stvorio) novu teoriju kretanja (dinamike) zasnovanu na kinetičkoj energiji i potencijalnoj energiji, a koja se zalaže za to da je prostor relativan, dok Njutn smatra da je prostor apsolutan. Lajbnicova „vis viva“ („živa sila“) jeste nepromenljiva matematička osobina određenog mehaničkog sistema. Ona se može posmatrati kao poseban slučaj odražavanja energije. Filologija Lajbnic je bio zavidan student jezika, posebno zainteresovan za vokabular i gramatiku. Poricao je široko rasprostranjeno verovanje u hrišćanskom obrazovanju njegovog vremena, da je hebrejski prvobitni jezik ljudske rase. Bavio se poreklom slovenskih jezika, bio je svestan postojanja sanskrita kao i njegovog značaja, i fascinirao ga je klasičan kineski jezik. Priroda Prirodnonaučni pojam kontinuiteta prvi je odredio Aristotel. Do obuhvatnijeg značenja on dolazi kod Lajbnica u ubeđenju da priroda ne čini skokove (natura non facit saltus), da se sve upliće u celinu. Ovoj predstavi je dao izraz u takozvanom zakonu kontinuiteta (lex continui), pri čemu je primenom ovog zakona pobijao fiziku Dekarta i Malbranša. „Ništa se ne događa u jednom udaru, a jedno je od mojih najvažnijih načela da priroda nikad ne čini skokove. Ovaj sam stav nazvao zakonom kontinuiteta“, kaže Lajbnic. Moderna teorijska fizika od razvoja kvantne teorije i njenog uobličenja (kvantna mehanika), naprotiv, radije pak pretpostavlja diskontinualne, u smislu ovog navoda „skokovite“ prelaze od jednog u neko drugo stanje. Lajbnic je uveo pojam aktuelno beskonačnog koji je prihvatio i Imanuel Kant. Prvi je uveo pojam involucije (involution), što je po njemu razvoj prema smrti, nasuprot evoluciji, razvoj prema životu. Pravo Prema Lajbnicu celokupno pravo služi zajedničkom dobru, koje je on gledao kao održavanje i napredovanje univerzuma. U prvom redu samog božanskog svetskog poretka, u drugom redu ljudskog roda i u trećem redu države. Odabrana dela 1666. De Arte Combinatoria 1671. Hypothesis Physica Nova 1673. Confessio Philosophi 1684. Nova methodus pro maximis et minimis 1686. Discours de meta physique 1705. Explication de l’Arithmetique Binarie 1710. Theodicee 1714. Monadologie „Teodikeja“ i „Monadologija“ su mu kapitalna i najznačajnija dela. Prevedeni su: Metafizička rasprava (Metaphysische Abhandlung) (prev. „Rasprava o metafizici“, u: Lajbnic, Izabrani filozofski spisi, Naprijed, Zagreb, (1980). pp. 108-152) Monadologija (Monadologie) (u prevodu: Kultura, Beograd, 1957; u Izabrani filozofski spisi, Naprijed, Zagreb, 1980, Novi ogledi o ljudskom razumu (Nouveaux essais sur l`entendement humain) (prevod: „Veselin Masleša“, Sarajevo, 1986); Drugo izdanje na srpskom: BIGZ, prevod sa francuskog dr Milana Tasića, Beograd, 1995) MG10 (N)

Prikaži sve...
2,490RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! G.V. Lajbnicova monadologija, jedno od najvažnijih dela Lajbnicovog korpusa, istovremeno je jedan od velikih klasika moderne filozofije i jedna od njenih najzagonetnijih produkcija. Pošto je esej napisan na tako kompaktno sažet način, skoro tri veka zbunjuje i vara one koji ga prvi put čitaju. Monadologija (francuski: La Monadologie, 1714) je jedno od najpoznatijih dela Gotfrida Lajbnica u njegovoj kasnijoj filozofiji. To je kratak tekst koji u oko 90 pasusa predstavlja metafiziku jednostavnih supstanci, ili monada. Tokom svog poslednjeg boravka u Beču od 1712. do septembra 1714. Lajbnic je napisao dva kratka teksta na francuskom jeziku koji su bili zamišljeni kao sažeta izlaganja njegove filozofije. Nakon njegove smrti, Principes de la nature et de la grace fondes en raison, koji je bio namenjen princu Eugenu Savojskom, pojavio se na francuskom jeziku u Holandiji. Kristijan Volf i saradnici objavili su prevode na nemački i latinski drugog teksta koji je postao poznat kao Monadologija. Bez da su videli holandsku publikaciju Principesa, pretpostavili su da je to francuski original Monadologije, koji je u stvari ostao neobjavljen do 1840. Nemački prevod se pojavio 1720. kao Lehrsatze uber die Monadologie, a sledeće godine Acta Eruditorum je štampala latinsku verziju kao Principia philosophiae.[1] Postoje tri originalna rukopisa teksta: prvi koji je napisao Lajbnic i glosiran ispravkama i dve dalje dopunjene kopije sa nekim ispravkama koje se pojavljuju u jednom, ali ne i u drugom.[2] Sam Lajbnic je ubacio reference na odlomke svoje Theodicee („Teodiceje“, tj. Božije opravdanje), šaljući zainteresovanog čitaoca tamo za više detalja. Gottfried Wilhelm Freiherr (baron) von Leibniz; Lajpcig, 1. jul 1646 — Hanover, 14. novembar 1716), bio je nemački filozof, matematičar, pronalazač, pravnik, istoričar, diplomata i politički savetnik. Dao je značajan doprinos u optici i mehanici. Smatra se poslednjim čovekom enciklopedijskog znanja zapadne civilizacije. Stekao je obrazovanje iz prava i filozofije, radio je kao sekretar u dvema najpoznatijim plemićkim porodicama u Nemačkoj (od kojih je jedna tokom njegovog službovanja postala engleska kraljevska porodica). Zauzima podjednako značajno mesto kako u istoriji filozofije tako i u istoriji matematike. Ustanovio je infinitezimalni račun (kalkulus, matematička analiza) nezavisno od Njutna, kao i binarni sistem koji predstavlja osnovu moderne računarske tehnologije. U filozofiji ostaće najpoznatiji po optimizmu, npr. njegov zaključak da je Bog stvorio najbolji svet od svih mogućih svetova. Lajbnic je dao veliki doprinos u fizici (optici i mehanici) i tehnologiji, kao i, što će se kasnije utvrditi, biologiji, medicini, geologiji, teoriji verovatnoće, psihologiji, informatici. Pisao je na latinskom, francuskom i nemačkom i to o politici, pravu, etici, teologiji, istoriji i filologiji. Iako je mnogo pisao, malo toga je objavljeno. Sin luteranskog profesora moralne filozofije Fridriha, Lajbnic ja preko biblioteke svoga oca razvio interesovanje za širok krug predmeta. Sa 12 godina je naučio latinski bez ičije pomoći. Sa samo 14 godina je upisao univerzitet u Lajpcigu, a potom je učio u Jeni i Altdorfu, gde je 1666. godine stekao doktorat iz prava sa samo dvadeset godina. Lajbnicov talenat će se višestruko ispoljiti kako u pravu, religiji, diplomatiji, filozofiji, tako i u matematici. Rad Karijeru je započeo kao advokat i diplomata, u početku radeći za izbornog kneza od Majnca godine 1667. i na tom poslu je izvršio kodifikaciju zakonskih propisa grada. Radio je i za vojvode Braunšvajg – Lineburg kao bibliotekar i savetnik (1676 – 1716.). Godine 1700. pomogao je pri osnivanju Berlinske akademije nauka i postao njen prvi predsednik. Tokom putovanja u Pariz 1673. i 1676. godine, Kristijan Hajgens ga je zainteresovao za tekući rad u matematici i Lajbnic se bavio ovim radom u svojim slobodnim trenucima, da bi ostvario sjajna otkrića kako u infinitezimalnom računu (nezavisno od Njutna), tako i u kombinatoričkoj analizi, diferencijalnom i integralnom računu. U isto to vreme Lajbnic je bio veoma zauzet uspostavljanjem zakonskih prava legitimnih i mnogih nelegitimnih članova domaćinstva tri izborna kneza kojima je redom služio. Često u pokretu i pomno beležeći svoje misli o mnogim stvarima, on se istovremeno bavio diplomatijom i pravljenjem planova za francusku invaziju na Egipat. Takođe, angažovao se u neuspešnom pokušaju da ujedini katoličku i protestantsku crkvu 1683. Kada je njegov prvi poslodavac, izborni knez oa Hanovera, bio na putu da postane Džordž I od Engleske, Lajbnic je otpušten i ostavljen da piše istoriju porodice Brunsvik. Tokom svog boravka u Parizu značajno je proširio znanja iz matematike i fizike, susreo se sa vodećim francuskim filozofima toga vremena i proučavao je dela Dekarta i Paskala. 1674. godine je počeo da radi na infinitezimalnom računu, a najraniji podaci o upotrebi ovog računa nalaze se u njegovim beleškama iz 1675. Do 1677. je razradio koherentan sistem infinitezimalnog računa, ali ga nije objavio sve do 1684. godine. Lajbnicova najznačajnija matematička otkrića su objavljena između 1682. i 1692, uglavnom u časopisu Acta Eruditorum, koji su on i Oto Menke osnovali 1682. godine. Ovaj časopis je imao značajnu ulogu u unapređenju Lajbnicove reputacije matematičara i naučnika, što je doprinelo da bude cenjen i u diplomatiji, istoriji, teologiji i filozofiji. Godine 1711. Džon Kil je pišući za časopis Kraljevskog društva i uz Njutnovu podršku optužio Lajbnica za plagiranje Njutnovog infinitezimalnog računa, što je dovelo do javne rasprave o tome ko je prvi otkrio infinitezimalni račun. Tek su istoričari matematike od 1900. godine pa nadalje istakli značajne razlike između Lajbnicove i Njutnove verzije infinitezimalnog računa i time dokazali da Lajbnic nije plagirao Njutna. Filozofija Lajbnic je nastojao da izmiri materijalizam i spiritualizam, ali je ostao spiritualist. Razumu je pridavao odlučnu prednost u odnosu na čula. Najpoznatije mu je učenje o monadama. Lajbnic daje uvid „da jedna supstanca uopšte ne može na prirodan način biti nedelatna“. Po njemu je neko saznanje ili tamno ili jasno, a jasno, opet, ili adekvatno ili neadekvatno, simboličko ili intuitivno; savršeno saznanje je istovremeno adekvatno i intuitivno. Lajbnic je kategorije omeđio na šest: supstancija, kvantitet, kvalitet, relacija, akcija i pasija (trpljenje). Monade Prostorno – vremenski svet materijalnih stvari i bića sastoji se iz monada, od kojih ne postoje dve apsolutno iste, ni dva ista trenutka u životu jedne monade (princip identiteta nerazlučivog). Monade su duhovne suštine, a izvor im je u Bogu kao najvišoj monadi. Bog je udesio da unutrašnja aktivnost svake monade bude u harmoniji sa aktivnošću svih ostalih (učenje o prestabiliranoj harmoniji), pa je svet savrešeno jedinstven iako ga čine individualne supstancije. Između monada ne postoje uzročno – posledični odnosi, iako je svako stanje monade uzrok njenom sledećem stanju, a istovremeno posledica prethodnog. Lajbnic naziva ljudsku dušu duhovnim automatom, jer ona sva svoja stanja razvija iz same sebe. On je pojam duše izrazio s idealističkog stanovišta, a njemu su se pridružili svi drugi noviji idealisti. Prema Lajbnicu se stvarnost sastoji iz jednog beskonačnog broja bestelesnih prostih pojedinačnih supstancija, čija je unutarnja suština snaga predstavljanja. Ali takve suštine su duše, a Lajbnic ih otuda naziva ames ili, na osnovu njihove jedinstvenosti, monade. Otuda kod Lajbnica samo duše čine stvarnost: sve monade je putem temeljnih razlika snage predstavljanja i manjeg i većeg savršenstva koje počiva na njoj tvorac doveo u jednom zauvek uspostavljenu harmoniju (prestabilizovana harmonija); svaka je stvorena s obzirom na drugu. Ako je u jednoj monadi toliko savršenstva koliko u drugima nesavršenosti, onda one sveukupno obrazuju agregat monada, od kojih prva funkcioniše kao centralna monada. Čulna predstava takvog agregata monada shvata takav agregat kao telo. Ljudska duša je posebno jedna takva centralna monada koja putem razmene svojih predstava stoji takođe u uzajamnim odnosima prema svom telu i u sebi uključuje razvoj putem oticanja i priticanja delova. Lajbnicu se priključuje Kristijan Vulf za koga je duša prosta supstanija sa snagom da sebi predstavlja svet (vis repraesentativa universi). Lajbnic naglašava da dve stvari nikada nisu potpuno jednake i da uvek postoje nesvesna čulna opažanja (percepcije) koja određuju delovanje. Njegov princip identiteta nerazlučivog tvrdi da su ličnost X i ličnost Y identične ako i samo ako dele ista suštinska nerelacijska svojstva. Njegova „Teodiceja“ (1710.) pokušava da pomiri dobrotu o Bogu sa postojanjem zla u svetu, pretpostavljajući da je samo Bog savršen i da je ovaj svet „najbolji od svih mogućih svetova“. Ovaj stav ismejan je u komičnom Volterovom romanu Kandid. Logika Lajbnic je izmislio univerzalni jezik za logiku i kao mladić počeo da proučava simboličku logiku. Od njega potiču prvi pokušaji da se logika formuliše kao aksiomatski sistem. Takođe je preduzeo prve pokušaje da logiku obrađuje u okviru formalnih računa. Izraz koji je Lajbnic koristio za simboličku logiku koju je razvio je characteristica universlis, „opšta odlika ili veština označavanja“. Lajbnic je verovao da se ljudsko razmišljanje, rezonovanje može svesti na račun vrsta, klasa i da takav račun može da razreši mnoga neslaganja, razlike u mišljenjima: „Jedini način da ispravimo naše mišljenje je da ga učinimo opipljivim, stvarnim poput matematičara, tako da kad otkrijemo našu grešku, i kada postoje sporovi, neslaganja među ljudima možemo prosto reći: Hajde da izračunamo (calculemus) bez dalje prepirke i da vidimo ko je u pravu“. Formalna logika Lajbnic je najvažniji logičar od vremena Aristotela pa do 1847. godine, kada su Džordž Bul i Augustus De Morgan izdali knjige koje ujedno predstavljaju početak moderne formalne logike. Lajbnic je izneo glavne karakteristike onoga što nazivamo konjunkcija, disjunkcija, negacija, identitet, podskupovi i prazni skupovi. Osnovni principi Lajbnicove logike, i opravdano cele njegove filozofije mogu se svesti na dva osnovna principa: sve naše ideje su sastavljene od vrlo malog broja prostih ideja koje čine alfabet ljudske misli (ljudskog razmišljanja), kompleksne (složene) ideje nastaju iz ovih prostih ideja jednoobraznom i simetričnom kombinacijom, analogno aritmetičkom množenju. Lajbnic nije objavio ništa o formalnoj logici za života; većina onoga što je napisano na tu temu postoji u obliku radnih beleški. Matematika Iako se matematičko shvatanje funkcije implicitno koristilo u trigonometriji i logaritamskim tablicama, koje su postojale u to vreme, Lajbnic ih je prvi 1692. i 1694. godine primenio eksplicitno kako bi označio neki od više geometrijskih koncepata koji potiču od krive, kao što su apscisa, ordinata, tangenta, tetiva i vertikala. U XVIII veku „funkcija“ je izgubila ovakve geometrijske asocijacije. Lajbnic je prvi uvideo da se koeficijenti sistema linearne jednakosti mogu predstaviti kao niz, poznatiji kao matrica, koji se može iskoristiti da bi se pronašlo rešenje sistema. Ovaj metod je kasnije nazvan Gausova eliminacija. Nakon što je postavio svoju konstrukciju infinitezimalnog računa počela je njegova žestoka diskusija s Njutnom o pravu prvenstva. Lajbnic je svoj rad objavio posle Njutna, nakon 1665. godine, ali nezavisno od njega. Notaciju koju danas koristimo u infinitezimalnom računu dugujemo Lajbnicu. Manji deo njegovog rada bio je o beskonačnim nizovima, gde je 1674. godine otkrio relaciju između π i svih drugih nepernih brojeva: π / 4 = 1 – 1/3 + 1/5 – 1/7 + 1/9... koju je ranije pronašao Gregori. U matematici Lajbnic je istraživao ideju o univerzalnom matematičko – logičkom jeziku zasnovanom na binarnom sistemu. Suprotno od Lajbnicove ideje, sve mašine za računanje koje su kasnije konstruisane koristile su dekadni sistem za računanje. 1672. godine Lajbnic je izumeo mašinu za računanje koja je bila daleko bolja od Paskalove koja je mogla samo da sabira i oduzima; Lajbnicova je mogla još i da množi, deli i računa kvadratni koren. Lajbnic je 1697. godine prvi predstavio binarni sistem, onosno brojevni sistem u kojem se uz pomoć samo dve cifre 0 i 1 može prikazati svaki broj (dok se u običnom dekadnom sistemu koristi deset cifara 0 ..... 9). Dekadno 1 se pri tom u binarnom sistemu pojavljuje kao 1 (1x2°), 2 kao 10 (1x2¹ + 0x2°), 3 kao 11 (1x2¹ + + 1x2°), 4 kao 100 (1h2² + 0x2¹ + 0x2°) itd. U modernoj obradi podataka sprovodi se binarni sistem, stoga što se njegove cifre 0 i 1 lako pridružuju električnim stanjima UKLjUČENO i ISKLjUČENO, a time se svaki broj može predstaviti nekim nizom takvih stanja. Pojam diferencijal uveo je Lajbnic za označavanje lokalne (tačkaste) linearne aproksimacije: pri obrazovanju diferencijalnog količnika dy:dx = f(x); izrazi dy i dx označavaju se kao diferencijali. Infinitezimalni račun Lajbnic je zaslužan, zajedno sa Isakom Njutnom, za otkriće infinitezimalnog računa. Prema Lajbnicovim beleškama do presudnog otkrića došlo je 11. novembra 1675. godine kada je po prvi put primenio integralni račun kako bi pronašao domen funkcije y = x. Lajbnic je uveo neke notacije koje su se zadržale do danas, kao što su recimo znak ∫ (koji potiče od latinske reči summa) i d koje označava diferencijale (od latinske reči differentia). Lajbnic o svom infinitezimalnom računu nije objavio ništa sve do 1684. godine. Slobodno se koristio matematičkim entitetima nazivajući ih infinitezimalima, sugerišući da oni imaju paradoksalne osobine (kvalitete). Fizika Lajbnic je izumeo (stvorio) novu teoriju kretanja (dinamike) zasnovanu na kinetičkoj energiji i potencijalnoj energiji, a koja se zalaže za to da je prostor relativan, dok Njutn smatra da je prostor apsolutan. Lajbnicova „vis viva“ („živa sila“) jeste nepromenljiva matematička osobina određenog mehaničkog sistema. Ona se može posmatrati kao poseban slučaj odražavanja energije. Filologija Lajbnic je bio zavidan student jezika, posebno zainteresovan za vokabular i gramatiku. Poricao je široko rasprostranjeno verovanje u hrišćanskom obrazovanju njegovog vremena, da je hebrejski prvobitni jezik ljudske rase. Bavio se poreklom slovenskih jezika, bio je svestan postojanja sanskrita kao i njegovog značaja, i fascinirao ga je klasičan kineski jezik. Priroda Prirodnonaučni pojam kontinuiteta prvi je odredio Aristotel. Do obuhvatnijeg značenja on dolazi kod Lajbnica u ubeđenju da priroda ne čini skokove (natura non facit saltus), da se sve upliće u celinu. Ovoj predstavi je dao izraz u takozvanom zakonu kontinuiteta (lex continui), pri čemu je primenom ovog zakona pobijao fiziku Dekarta i Malbranša. „Ništa se ne događa u jednom udaru, a jedno je od mojih najvažnijih načela da priroda nikad ne čini skokove. Ovaj sam stav nazvao zakonom kontinuiteta“, kaže Lajbnic. Moderna teorijska fizika od razvoja kvantne teorije i njenog uobličenja (kvantna mehanika), naprotiv, radije pak pretpostavlja diskontinualne, u smislu ovog navoda „skokovite“ prelaze od jednog u neko drugo stanje. Lajbnic je uveo pojam aktuelno beskonačnog koji je prihvatio i Imanuel Kant. Prvi je uveo pojam involucije (involution), što je po njemu razvoj prema smrti, nasuprot evoluciji, razvoj prema životu. Pravo Prema Lajbnicu celokupno pravo služi zajedničkom dobru, koje je on gledao kao održavanje i napredovanje univerzuma. U prvom redu samog božanskog svetskog poretka, u drugom redu ljudskog roda i u trećem redu države. Na kraju životnog puta Umro je zaboravljen, u Hanoveru 14. novembra 1716., savladan bolešću i usred spora oko svog pronalaska infinitezimalnog računa. Njegov grob obeležen je tek posle 50 godina, odnosno 1766....

Prikaži sve...
1,490RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! 10 tak recenica podvuceno hem olovkom, sve ostalo uredno! Teodiceja (drugi nazivi: racionalna teologija, filozofska teologija, lat. theologia naturalis) je filozofska disciplina o Bogu. Teodiceja se svrstava u specijalnu metafiziku. Razlikuje se od objavljene ili dogmatske teologije (lat. theologia dogmatica), koja se temelji na objavi i na božanskom autoritetu. Filozofska teologija ili teodiceja temelji se samo na iskustvu i razumu. Sam naziv teodiceja skovao je G. W. Leibniz, davši naslov svom djelu: Essai de Théodicée sur la bonté de Dieu, la liberté de l’homme et l’origine du mal („Eseji iz teodiceje o Božjoj dobroti, ljudskoj slobodi i podrijetlu zla“, 1710.). Boga zamišljamo kao apsolutno savršeno biće, prvi uzrok i zadnji cilj svih stvari. Pojam Boga uključuje, dakle, troje: Apsolutnu egzistenciju: Bog egzistira po sebi, neovisno o ikakvom uzroku. Savršenu esenciju: Bog ima u sebi puninu bitka i savršenosti. Savršenu kauzalnost: Bog je prvi uzrok i zadnji cilj svega. Prema tome, tri su poglavlja teodiceje: Božja egzistencija, Božja narav i atributi, te Odnos Boga prema svijetu. Teodiceja ili teodikeja (novolat. theodicea – bogoopravdanje; od grč. θεός – bog + grč. δίκη – pravo, pravednost) je grana filozofije i teologije koja pokušava da pomiri postojanje zla i patnje na svetu sa postojanjem svemogućeg dobrog božanstva. Iako je ovo pitanje razmatrano još od antike, sam termin teodiceja je uveo Lajbnic (1646-1716) u svome istoimenom delu, u kom se trudio da dokaže da je ovaj svet najbolji od svih mogućih svetova i da postojanje zla na svetu ne protivreči Božjoj dobroti, već je plod slobodne volje čoveka. Gottfried Wilhelm Freiherr (baron) von Leibniz; Lajpcig, 1. jul 1646 — Hanover, 14. novembar 1716), bio je nemački filozof, matematičar, pronalazač, pravnik, istoričar, diplomata i politički savetnik. Dao je značajan doprinos u optici i mehanici. Smatra se poslednjim čovekom enciklopedijskog znanja zapadne civilizacije. Stekao je obrazovanje iz prava i filozofije, radio je kao sekretar u dvema najpoznatijim plemićkim porodicama u Nemačkoj (od kojih je jedna tokom njegovog službovanja postala engleska kraljevska porodica). Zauzima podjednako značajno mesto kako u istoriji filozofije tako i u istoriji matematike. Ustanovio je infinitezimalni račun (kalkulus, matematička analiza) nezavisno od Njutna, kao i binarni sistem koji predstavlja osnovu moderne računarske tehnologije. U filozofiji ostaće najpoznatiji po optimizmu, npr. njegov zaključak da je Bog stvorio najbolji svet od svih mogućih svetova. Lajbnic je dao veliki doprinos u fizici (optici i mehanici) i tehnologiji, kao i, što će se kasnije utvrditi, biologiji, medicini, geologiji, teoriji verovatnoće, psihologiji, informatici. Pisao je na latinskom, francuskom i nemačkom i to o politici, pravu, etici, teologiji, istoriji i filologiji. Iako je mnogo pisao, malo toga je objavljeno. Sin luteranskog profesora moralne filozofije Fridriha, Lajbnic ja preko biblioteke svoga oca razvio interesovanje za širok krug predmeta. Sa 12 godina je naučio latinski bez ičije pomoći. Sa samo 14 godina je upisao univerzitet u Lajpcigu, a potom je učio u Jeni i Altdorfu, gde je 1666. godine stekao doktorat iz prava sa samo dvadeset godina. Lajbnicov talenat će se višestruko ispoljiti kako u pravu, religiji, diplomatiji, filozofiji, tako i u matematici. Rad Karijeru je započeo kao advokat i diplomata, u početku radeći za izbornog kneza od Majnca godine 1667. i na tom poslu je izvršio kodifikaciju zakonskih propisa grada. Radio je i za vojvode Braunšvajg – Lineburg kao bibliotekar i savetnik (1676 – 1716.). Godine 1700. pomogao je pri osnivanju Berlinske akademije nauka i postao njen prvi predsednik. Tokom putovanja u Pariz 1673. i 1676. godine, Kristijan Hajgens ga je zainteresovao za tekući rad u matematici i Lajbnic se bavio ovim radom u svojim slobodnim trenucima, da bi ostvario sjajna otkrića kako u infinitezimalnom računu (nezavisno od Njutna), tako i u kombinatoričkoj analizi, diferencijalnom i integralnom računu. U isto to vreme Lajbnic je bio veoma zauzet uspostavljanjem zakonskih prava legitimnih i mnogih nelegitimnih članova domaćinstva tri izborna kneza kojima je redom služio. Često u pokretu i pomno beležeći svoje misli o mnogim stvarima, on se istovremeno bavio diplomatijom i pravljenjem planova za francusku invaziju na Egipat. Takođe, angažovao se u neuspešnom pokušaju da ujedini katoličku i protestantsku crkvu 1683. Kada je njegov prvi poslodavac, izborni knez oa Hanovera, bio na putu da postane Džordž I od Engleske, Lajbnic je otpušten i ostavljen da piše istoriju porodice Brunsvik. Tokom svog boravka u Parizu značajno je proširio znanja iz matematike i fizike, susreo se sa vodećim francuskim filozofima toga vremena i proučavao je dela Dekarta i Paskala. 1674. godine je počeo da radi na infinitezimalnom računu, a najraniji podaci o upotrebi ovog računa nalaze se u njegovim beleškama iz 1675. Do 1677. je razradio koherentan sistem infinitezimalnog računa, ali ga nije objavio sve do 1684. godine. Lajbnicova najznačajnija matematička otkrića su objavljena između 1682. i 1692, uglavnom u časopisu Acta Eruditorum, koji su on i Oto Menke osnovali 1682. godine. Ovaj časopis je imao značajnu ulogu u unapređenju Lajbnicove reputacije matematičara i naučnika, što je doprinelo da bude cenjen i u diplomatiji, istoriji, teologiji i filozofiji. Godine 1711. Džon Kil je pišući za časopis Kraljevskog društva i uz Njutnovu podršku optužio Lajbnica za plagiranje Njutnovog infinitezimalnog računa, što je dovelo do javne rasprave o tome ko je prvi otkrio infinitezimalni račun. Tek su istoričari matematike od 1900. godine pa nadalje istakli značajne razlike između Lajbnicove i Njutnove verzije infinitezimalnog računa i time dokazali da Lajbnic nije plagirao Njutna. Filozofija Lajbnic je nastojao da izmiri materijalizam i spiritualizam, ali je ostao spiritualist. Razumu je pridavao odlučnu prednost u odnosu na čula. Najpoznatije mu je učenje o monadama. Lajbnic daje uvid „da jedna supstanca uopšte ne može na prirodan način biti nedelatna“. Po njemu je neko saznanje ili tamno ili jasno, a jasno, opet, ili adekvatno ili neadekvatno, simboličko ili intuitivno; savršeno saznanje je istovremeno adekvatno i intuitivno. Lajbnic je kategorije omeđio na šest: supstancija, kvantitet, kvalitet, relacija, akcija i pasija (trpljenje). Monade Prostorno – vremenski svet materijalnih stvari i bića sastoji se iz monada, od kojih ne postoje dve apsolutno iste, ni dva ista trenutka u životu jedne monade (princip identiteta nerazlučivog). Monade su duhovne suštine, a izvor im je u Bogu kao najvišoj monadi. Bog je udesio da unutrašnja aktivnost svake monade bude u harmoniji sa aktivnošću svih ostalih (učenje o prestabiliranoj harmoniji), pa je svet savrešeno jedinstven iako ga čine individualne supstancije. Između monada ne postoje uzročno – posledični odnosi, iako je svako stanje monade uzrok njenom sledećem stanju, a istovremeno posledica prethodnog. Lajbnic naziva ljudsku dušu duhovnim automatom, jer ona sva svoja stanja razvija iz same sebe. On je pojam duše izrazio s idealističkog stanovišta, a njemu su se pridružili svi drugi noviji idealisti. Prema Lajbnicu se stvarnost sastoji iz jednog beskonačnog broja bestelesnih prostih pojedinačnih supstancija, čija je unutarnja suština snaga predstavljanja. Ali takve suštine su duše, a Lajbnic ih otuda naziva ames ili, na osnovu njihove jedinstvenosti, monade. Otuda kod Lajbnica samo duše čine stvarnost: sve monade je putem temeljnih razlika snage predstavljanja i manjeg i većeg savršenstva koje počiva na njoj tvorac doveo u jednom zauvek uspostavljenu harmoniju (prestabilizovana harmonija); svaka je stvorena s obzirom na drugu. Ako je u jednoj monadi toliko savršenstva koliko u drugima nesavršenosti, onda one sveukupno obrazuju agregat monada, od kojih prva funkcioniše kao centralna monada. Čulna predstava takvog agregata monada shvata takav agregat kao telo. Ljudska duša je posebno jedna takva centralna monada koja putem razmene svojih predstava stoji takođe u uzajamnim odnosima prema svom telu i u sebi uključuje razvoj putem oticanja i priticanja delova. Lajbnicu se priključuje Kristijan Vulf za koga je duša prosta supstanija sa snagom da sebi predstavlja svet (vis repraesentativa universi). Lajbnic naglašava da dve stvari nikada nisu potpuno jednake i da uvek postoje nesvesna čulna opažanja (percepcije) koja određuju delovanje. Njegov princip identiteta nerazlučivog tvrdi da su ličnost X i ličnost Y identične ako i samo ako dele ista suštinska nerelacijska svojstva. Njegova „Teodiceja“ (1710.) pokušava da pomiri dobrotu o Bogu sa postojanjem zla u svetu, pretpostavljajući da je samo Bog savršen i da je ovaj svet „najbolji od svih mogućih svetova“. Ovaj stav ismejan je u komičnom Volterovom romanu Kandid. Logika Lajbnic je izmislio univerzalni jezik za logiku i kao mladić počeo da proučava simboličku logiku. Od njega potiču prvi pokušaji da se logika formuliše kao aksiomatski sistem. Takođe je preduzeo prve pokušaje da logiku obrađuje u okviru formalnih računa. Izraz koji je Lajbnic koristio za simboličku logiku koju je razvio je characteristica universlis, „opšta odlika ili veština označavanja“. Lajbnic je verovao da se ljudsko razmišljanje, rezonovanje može svesti na račun vrsta, klasa i da takav račun može da razreši mnoga neslaganja, razlike u mišljenjima: „Jedini način da ispravimo naše mišljenje je da ga učinimo opipljivim, stvarnim poput matematičara, tako da kad otkrijemo našu grešku, i kada postoje sporovi, neslaganja među ljudima možemo prosto reći: Hajde da izračunamo (calculemus) bez dalje prepirke i da vidimo ko je u pravu“. Formalna logika Lajbnic je najvažniji logičar od vremena Aristotela pa do 1847. godine, kada su Džordž Bul i Augustus De Morgan izdali knjige koje ujedno predstavljaju početak moderne formalne logike. Lajbnic je izneo glavne karakteristike onoga što nazivamo konjunkcija, disjunkcija, negacija, identitet, podskupovi i prazni skupovi. Osnovni principi Lajbnicove logike, i opravdano cele njegove filozofije mogu se svesti na dva osnovna principa: sve naše ideje su sastavljene od vrlo malog broja prostih ideja koje čine alfabet ljudske misli (ljudskog razmišljanja), kompleksne (složene) ideje nastaju iz ovih prostih ideja jednoobraznom i simetričnom kombinacijom, analogno aritmetičkom množenju. Lajbnic nije objavio ništa o formalnoj logici za života; većina onoga što je napisano na tu temu postoji u obliku radnih beleški. Matematika Iako se matematičko shvatanje funkcije implicitno koristilo u trigonometriji i logaritamskim tablicama, koje su postojale u to vreme, Lajbnic ih je prvi 1692. i 1694. godine primenio eksplicitno kako bi označio neki od više geometrijskih koncepata koji potiču od krive, kao što su apscisa, ordinata, tangenta, tetiva i vertikala. U XVIII veku „funkcija“ je izgubila ovakve geometrijske asocijacije. Lajbnic je prvi uvideo da se koeficijenti sistema linearne jednakosti mogu predstaviti kao niz, poznatiji kao matrica, koji se može iskoristiti da bi se pronašlo rešenje sistema. Ovaj metod je kasnije nazvan Gausova eliminacija. Nakon što je postavio svoju konstrukciju infinitezimalnog računa počela je njegova žestoka diskusija s Njutnom o pravu prvenstva. Lajbnic je svoj rad objavio posle Njutna, nakon 1665. godine, ali nezavisno od njega. Notaciju koju danas koristimo u infinitezimalnom računu dugujemo Lajbnicu. Manji deo njegovog rada bio je o beskonačnim nizovima, gde je 1674. godine otkrio relaciju između π i svih drugih nepernih brojeva: π / 4 = 1 – 1/3 + 1/5 – 1/7 + 1/9... koju je ranije pronašao Gregori. U matematici Lajbnic je istraživao ideju o univerzalnom matematičko – logičkom jeziku zasnovanom na binarnom sistemu. Suprotno od Lajbnicove ideje, sve mašine za računanje koje su kasnije konstruisane koristile su dekadni sistem za računanje. 1672. godine Lajbnic je izumeo mašinu za računanje koja je bila daleko bolja od Paskalove koja je mogla samo da sabira i oduzima; Lajbnicova je mogla još i da množi, deli i računa kvadratni koren. Lajbnic je 1697. godine prvi predstavio binarni sistem, onosno brojevni sistem u kojem se uz pomoć samo dve cifre 0 i 1 može prikazati svaki broj (dok se u običnom dekadnom sistemu koristi deset cifara 0 ..... 9). Dekadno 1 se pri tom u binarnom sistemu pojavljuje kao 1 (1x2°), 2 kao 10 (1x2¹ + 0x2°), 3 kao 11 (1x2¹ + + 1x2°), 4 kao 100 (1h2² + 0x2¹ + 0x2°) itd. U modernoj obradi podataka sprovodi se binarni sistem, stoga što se njegove cifre 0 i 1 lako pridružuju električnim stanjima UKLjUČENO i ISKLjUČENO, a time se svaki broj može predstaviti nekim nizom takvih stanja. Pojam diferencijal uveo je Lajbnic za označavanje lokalne (tačkaste) linearne aproksimacije: pri obrazovanju diferencijalnog količnika dy:dx = f(x); izrazi dy i dx označavaju se kao diferencijali. Infinitezimalni račun Lajbnic je zaslužan, zajedno sa Isakom Njutnom, za otkriće infinitezimalnog računa. Prema Lajbnicovim beleškama do presudnog otkrića došlo je 11. novembra 1675. godine kada je po prvi put primenio integralni račun kako bi pronašao domen funkcije y = x. Lajbnic je uveo neke notacije koje su se zadržale do danas, kao što su recimo znak ∫ (koji potiče od latinske reči summa) i d koje označava diferencijale (od latinske reči differentia). Lajbnic o svom infinitezimalnom računu nije objavio ništa sve do 1684. godine. Slobodno se koristio matematičkim entitetima nazivajući ih infinitezimalima, sugerišući da oni imaju paradoksalne osobine (kvalitete). Fizika Lajbnic je izumeo (stvorio) novu teoriju kretanja (dinamike) zasnovanu na kinetičkoj energiji i potencijalnoj energiji, a koja se zalaže za to da je prostor relativan, dok Njutn smatra da je prostor apsolutan. Lajbnicova „vis viva“ („živa sila“) jeste nepromenljiva matematička osobina određenog mehaničkog sistema. Ona se može posmatrati kao poseban slučaj odražavanja energije. Filologija Lajbnic je bio zavidan student jezika, posebno zainteresovan za vokabular i gramatiku. Poricao je široko rasprostranjeno verovanje u hrišćanskom obrazovanju njegovog vremena, da je hebrejski prvobitni jezik ljudske rase. Bavio se poreklom slovenskih jezika, bio je svestan postojanja sanskrita kao i njegovog značaja, i fascinirao ga je klasičan kineski jezik. Priroda Prirodnonaučni pojam kontinuiteta prvi je odredio Aristotel. Do obuhvatnijeg značenja on dolazi kod Lajbnica u ubeđenju da priroda ne čini skokove (natura non facit saltus), da se sve upliće u celinu. Ovoj predstavi je dao izraz u takozvanom zakonu kontinuiteta (lex continui), pri čemu je primenom ovog zakona pobijao fiziku Dekarta i Malbranša. „Ništa se ne događa u jednom udaru, a jedno je od mojih najvažnijih načela da priroda nikad ne čini skokove. Ovaj sam stav nazvao zakonom kontinuiteta“, kaže Lajbnic. Moderna teorijska fizika od razvoja kvantne teorije i njenog uobličenja (kvantna mehanika), naprotiv, radije pak pretpostavlja diskontinualne, u smislu ovog navoda „skokovite“ prelaze od jednog u neko drugo stanje. Lajbnic je uveo pojam aktuelno beskonačnog koji je prihvatio i Imanuel Kant. Prvi je uveo pojam involucije (involution), što je po njemu razvoj prema smrti, nasuprot evoluciji, razvoj prema životu. Pravo Prema Lajbnicu celokupno pravo služi zajedničkom dobru, koje je on gledao kao održavanje i napredovanje univerzuma. U prvom redu samog božanskog svetskog poretka, u drugom redu ljudskog roda i u trećem redu države. Na kraju životnog puta Umro je zaboravljen, u Hanoveru 14. novembra 1716., savladan bolešću i usred spora oko svog pronalaska infinitezimalnog računa. Njegov grob obeležen je tek posle 50 godina, odnosno 1766....

Prikaži sve...
1,490RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! G.V. Lajbnicova monadologija, jedno od najvažnijih dela Lajbnicovog korpusa, istovremeno je jedan od velikih klasika moderne filozofije i jedna od njenih najzagonetnijih produkcija. Pošto je esej napisan na tako kompaktno sažet način, skoro tri veka zbunjuje i vara one koji ga prvi put čitaju. Monadologija (francuski: La Monadologie, 1714) je jedno od najpoznatijih dela Gotfrida Lajbnica u njegovoj kasnijoj filozofiji. To je kratak tekst koji u oko 90 pasusa predstavlja metafiziku jednostavnih supstanci, ili monada. Tokom svog poslednjeg boravka u Beču od 1712. do septembra 1714. Lajbnic je napisao dva kratka teksta na francuskom jeziku koji su bili zamišljeni kao sažeta izlaganja njegove filozofije. Nakon njegove smrti, Principes de la nature et de la grace fondes en raison, koji je bio namenjen princu Eugenu Savojskom, pojavio se na francuskom jeziku u Holandiji. Kristijan Volf i saradnici objavili su prevode na nemački i latinski drugog teksta koji je postao poznat kao Monadologija. Bez da su videli holandsku publikaciju Principesa, pretpostavili su da je to francuski original Monadologije, koji je u stvari ostao neobjavljen do 1840. Nemački prevod se pojavio 1720. kao Lehrsatze uber die Monadologie, a sledeće godine Acta Eruditorum je štampala latinsku verziju kao Principia philosophiae.[1] Postoje tri originalna rukopisa teksta: prvi koji je napisao Lajbnic i glosiran ispravkama i dve dalje dopunjene kopije sa nekim ispravkama koje se pojavljuju u jednom, ali ne i u drugom.[2] Sam Lajbnic je ubacio reference na odlomke svoje Theodicee („Teodiceje“, tj. Božije opravdanje), šaljući zainteresovanog čitaoca tamo za više detalja. Gottfried Wilhelm Freiherr (baron) von Leibniz; Lajpcig, 1. jul 1646 — Hanover, 14. novembar 1716), bio je nemački filozof, matematičar, pronalazač, pravnik, istoričar, diplomata i politički savetnik. Dao je značajan doprinos u optici i mehanici. Smatra se poslednjim čovekom enciklopedijskog znanja zapadne civilizacije. Stekao je obrazovanje iz prava i filozofije, radio je kao sekretar u dvema najpoznatijim plemićkim porodicama u Nemačkoj (od kojih je jedna tokom njegovog službovanja postala engleska kraljevska porodica). Zauzima podjednako značajno mesto kako u istoriji filozofije tako i u istoriji matematike. Ustanovio je infinitezimalni račun (kalkulus, matematička analiza) nezavisno od Njutna, kao i binarni sistem koji predstavlja osnovu moderne računarske tehnologije. U filozofiji ostaće najpoznatiji po optimizmu, npr. njegov zaključak da je Bog stvorio najbolji svet od svih mogućih svetova. Lajbnic je dao veliki doprinos u fizici (optici i mehanici) i tehnologiji, kao i, što će se kasnije utvrditi, biologiji, medicini, geologiji, teoriji verovatnoće, psihologiji, informatici. Pisao je na latinskom, francuskom i nemačkom i to o politici, pravu, etici, teologiji, istoriji i filologiji. Iako je mnogo pisao, malo toga je objavljeno. Sin luteranskog profesora moralne filozofije Fridriha, Lajbnic ja preko biblioteke svoga oca razvio interesovanje za širok krug predmeta. Sa 12 godina je naučio latinski bez ičije pomoći. Sa samo 14 godina je upisao univerzitet u Lajpcigu, a potom je učio u Jeni i Altdorfu, gde je 1666. godine stekao doktorat iz prava sa samo dvadeset godina. Lajbnicov talenat će se višestruko ispoljiti kako u pravu, religiji, diplomatiji, filozofiji, tako i u matematici. Rad Karijeru je započeo kao advokat i diplomata, u početku radeći za izbornog kneza od Majnca godine 1667. i na tom poslu je izvršio kodifikaciju zakonskih propisa grada. Radio je i za vojvode Braunšvajg – Lineburg kao bibliotekar i savetnik (1676 – 1716.). Godine 1700. pomogao je pri osnivanju Berlinske akademije nauka i postao njen prvi predsednik. Tokom putovanja u Pariz 1673. i 1676. godine, Kristijan Hajgens ga je zainteresovao za tekući rad u matematici i Lajbnic se bavio ovim radom u svojim slobodnim trenucima, da bi ostvario sjajna otkrića kako u infinitezimalnom računu (nezavisno od Njutna), tako i u kombinatoričkoj analizi, diferencijalnom i integralnom računu. U isto to vreme Lajbnic je bio veoma zauzet uspostavljanjem zakonskih prava legitimnih i mnogih nelegitimnih članova domaćinstva tri izborna kneza kojima je redom služio. Često u pokretu i pomno beležeći svoje misli o mnogim stvarima, on se istovremeno bavio diplomatijom i pravljenjem planova za francusku invaziju na Egipat. Takođe, angažovao se u neuspešnom pokušaju da ujedini katoličku i protestantsku crkvu 1683. Kada je njegov prvi poslodavac, izborni knez oa Hanovera, bio na putu da postane Džordž I od Engleske, Lajbnic je otpušten i ostavljen da piše istoriju porodice Brunsvik. Tokom svog boravka u Parizu značajno je proširio znanja iz matematike i fizike, susreo se sa vodećim francuskim filozofima toga vremena i proučavao je dela Dekarta i Paskala. 1674. godine je počeo da radi na infinitezimalnom računu, a najraniji podaci o upotrebi ovog računa nalaze se u njegovim beleškama iz 1675. Do 1677. je razradio koherentan sistem infinitezimalnog računa, ali ga nije objavio sve do 1684. godine. Lajbnicova najznačajnija matematička otkrića su objavljena između 1682. i 1692, uglavnom u časopisu Acta Eruditorum, koji su on i Oto Menke osnovali 1682. godine. Ovaj časopis je imao značajnu ulogu u unapređenju Lajbnicove reputacije matematičara i naučnika, što je doprinelo da bude cenjen i u diplomatiji, istoriji, teologiji i filozofiji. Godine 1711. Džon Kil je pišući za časopis Kraljevskog društva i uz Njutnovu podršku optužio Lajbnica za plagiranje Njutnovog infinitezimalnog računa, što je dovelo do javne rasprave o tome ko je prvi otkrio infinitezimalni račun. Tek su istoričari matematike od 1900. godine pa nadalje istakli značajne razlike između Lajbnicove i Njutnove verzije infinitezimalnog računa i time dokazali da Lajbnic nije plagirao Njutna. Filozofija Lajbnic je nastojao da izmiri materijalizam i spiritualizam, ali je ostao spiritualist. Razumu je pridavao odlučnu prednost u odnosu na čula. Najpoznatije mu je učenje o monadama. Lajbnic daje uvid „da jedna supstanca uopšte ne može na prirodan način biti nedelatna“. Po njemu je neko saznanje ili tamno ili jasno, a jasno, opet, ili adekvatno ili neadekvatno, simboličko ili intuitivno; savršeno saznanje je istovremeno adekvatno i intuitivno. Lajbnic je kategorije omeđio na šest: supstancija, kvantitet, kvalitet, relacija, akcija i pasija (trpljenje). Monade Prostorno – vremenski svet materijalnih stvari i bića sastoji se iz monada, od kojih ne postoje dve apsolutno iste, ni dva ista trenutka u životu jedne monade (princip identiteta nerazlučivog). Monade su duhovne suštine, a izvor im je u Bogu kao najvišoj monadi. Bog je udesio da unutrašnja aktivnost svake monade bude u harmoniji sa aktivnošću svih ostalih (učenje o prestabiliranoj harmoniji), pa je svet savrešeno jedinstven iako ga čine individualne supstancije. Između monada ne postoje uzročno – posledični odnosi, iako je svako stanje monade uzrok njenom sledećem stanju, a istovremeno posledica prethodnog. Lajbnic naziva ljudsku dušu duhovnim automatom, jer ona sva svoja stanja razvija iz same sebe. On je pojam duše izrazio s idealističkog stanovišta, a njemu su se pridružili svi drugi noviji idealisti. Prema Lajbnicu se stvarnost sastoji iz jednog beskonačnog broja bestelesnih prostih pojedinačnih supstancija, čija je unutarnja suština snaga predstavljanja. Ali takve suštine su duše, a Lajbnic ih otuda naziva ames ili, na osnovu njihove jedinstvenosti, monade. Otuda kod Lajbnica samo duše čine stvarnost: sve monade je putem temeljnih razlika snage predstavljanja i manjeg i većeg savršenstva koje počiva na njoj tvorac doveo u jednom zauvek uspostavljenu harmoniju (prestabilizovana harmonija); svaka je stvorena s obzirom na drugu. Ako je u jednoj monadi toliko savršenstva koliko u drugima nesavršenosti, onda one sveukupno obrazuju agregat monada, od kojih prva funkcioniše kao centralna monada. Čulna predstava takvog agregata monada shvata takav agregat kao telo. Ljudska duša je posebno jedna takva centralna monada koja putem razmene svojih predstava stoji takođe u uzajamnim odnosima prema svom telu i u sebi uključuje razvoj putem oticanja i priticanja delova. Lajbnicu se priključuje Kristijan Vulf za koga je duša prosta supstanija sa snagom da sebi predstavlja svet (vis repraesentativa universi). Lajbnic naglašava da dve stvari nikada nisu potpuno jednake i da uvek postoje nesvesna čulna opažanja (percepcije) koja određuju delovanje. Njegov princip identiteta nerazlučivog tvrdi da su ličnost X i ličnost Y identične ako i samo ako dele ista suštinska nerelacijska svojstva. Njegova „Teodiceja“ (1710.) pokušava da pomiri dobrotu o Bogu sa postojanjem zla u svetu, pretpostavljajući da je samo Bog savršen i da je ovaj svet „najbolji od svih mogućih svetova“. Ovaj stav ismejan je u komičnom Volterovom romanu Kandid. Logika Lajbnic je izmislio univerzalni jezik za logiku i kao mladić počeo da proučava simboličku logiku. Od njega potiču prvi pokušaji da se logika formuliše kao aksiomatski sistem. Takođe je preduzeo prve pokušaje da logiku obrađuje u okviru formalnih računa. Izraz koji je Lajbnic koristio za simboličku logiku koju je razvio je characteristica universlis, „opšta odlika ili veština označavanja“. Lajbnic je verovao da se ljudsko razmišljanje, rezonovanje može svesti na račun vrsta, klasa i da takav račun može da razreši mnoga neslaganja, razlike u mišljenjima: „Jedini način da ispravimo naše mišljenje je da ga učinimo opipljivim, stvarnim poput matematičara, tako da kad otkrijemo našu grešku, i kada postoje sporovi, neslaganja među ljudima možemo prosto reći: Hajde da izračunamo (calculemus) bez dalje prepirke i da vidimo ko je u pravu“. Formalna logika Lajbnic je najvažniji logičar od vremena Aristotela pa do 1847. godine, kada su Džordž Bul i Augustus De Morgan izdali knjige koje ujedno predstavljaju početak moderne formalne logike. Lajbnic je izneo glavne karakteristike onoga što nazivamo konjunkcija, disjunkcija, negacija, identitet, podskupovi i prazni skupovi. Osnovni principi Lajbnicove logike, i opravdano cele njegove filozofije mogu se svesti na dva osnovna principa: sve naše ideje su sastavljene od vrlo malog broja prostih ideja koje čine alfabet ljudske misli (ljudskog razmišljanja), kompleksne (složene) ideje nastaju iz ovih prostih ideja jednoobraznom i simetričnom kombinacijom, analogno aritmetičkom množenju. Lajbnic nije objavio ništa o formalnoj logici za života; većina onoga što je napisano na tu temu postoji u obliku radnih beleški. Matematika Iako se matematičko shvatanje funkcije implicitno koristilo u trigonometriji i logaritamskim tablicama, koje su postojale u to vreme, Lajbnic ih je prvi 1692. i 1694. godine primenio eksplicitno kako bi označio neki od više geometrijskih koncepata koji potiču od krive, kao što su apscisa, ordinata, tangenta, tetiva i vertikala. U XVIII veku „funkcija“ je izgubila ovakve geometrijske asocijacije. Lajbnic je prvi uvideo da se koeficijenti sistema linearne jednakosti mogu predstaviti kao niz, poznatiji kao matrica, koji se može iskoristiti da bi se pronašlo rešenje sistema. Ovaj metod je kasnije nazvan Gausova eliminacija. Nakon što je postavio svoju konstrukciju infinitezimalnog računa počela je njegova žestoka diskusija s Njutnom o pravu prvenstva. Lajbnic je svoj rad objavio posle Njutna, nakon 1665. godine, ali nezavisno od njega. Notaciju koju danas koristimo u infinitezimalnom računu dugujemo Lajbnicu. Manji deo njegovog rada bio je o beskonačnim nizovima, gde je 1674. godine otkrio relaciju između π i svih drugih nepernih brojeva: π / 4 = 1 – 1/3 + 1/5 – 1/7 + 1/9... koju je ranije pronašao Gregori. U matematici Lajbnic je istraživao ideju o univerzalnom matematičko – logičkom jeziku zasnovanom na binarnom sistemu. Suprotno od Lajbnicove ideje, sve mašine za računanje koje su kasnije konstruisane koristile su dekadni sistem za računanje. 1672. godine Lajbnic je izumeo mašinu za računanje koja je bila daleko bolja od Paskalove koja je mogla samo da sabira i oduzima; Lajbnicova je mogla još i da množi, deli i računa kvadratni koren. Lajbnic je 1697. godine prvi predstavio binarni sistem, onosno brojevni sistem u kojem se uz pomoć samo dve cifre 0 i 1 može prikazati svaki broj (dok se u običnom dekadnom sistemu koristi deset cifara 0 ..... 9). Dekadno 1 se pri tom u binarnom sistemu pojavljuje kao 1 (1x2°), 2 kao 10 (1x2¹ + 0x2°), 3 kao 11 (1x2¹ + + 1x2°), 4 kao 100 (1h2² + 0x2¹ + 0x2°) itd. U modernoj obradi podataka sprovodi se binarni sistem, stoga što se njegove cifre 0 i 1 lako pridružuju električnim stanjima UKLjUČENO i ISKLjUČENO, a time se svaki broj može predstaviti nekim nizom takvih stanja. Pojam diferencijal uveo je Lajbnic za označavanje lokalne (tačkaste) linearne aproksimacije: pri obrazovanju diferencijalnog količnika dy:dx = f(x); izrazi dy i dx označavaju se kao diferencijali. Infinitezimalni račun Lajbnic je zaslužan, zajedno sa Isakom Njutnom, za otkriće infinitezimalnog računa. Prema Lajbnicovim beleškama do presudnog otkrića došlo je 11. novembra 1675. godine kada je po prvi put primenio integralni račun kako bi pronašao domen funkcije y = x. Lajbnic je uveo neke notacije koje su se zadržale do danas, kao što su recimo znak ∫ (koji potiče od latinske reči summa) i d koje označava diferencijale (od latinske reči differentia). Lajbnic o svom infinitezimalnom računu nije objavio ništa sve do 1684. godine. Slobodno se koristio matematičkim entitetima nazivajući ih infinitezimalima, sugerišući da oni imaju paradoksalne osobine (kvalitete). Fizika Lajbnic je izumeo (stvorio) novu teoriju kretanja (dinamike) zasnovanu na kinetičkoj energiji i potencijalnoj energiji, a koja se zalaže za to da je prostor relativan, dok Njutn smatra da je prostor apsolutan. Lajbnicova „vis viva“ („živa sila“) jeste nepromenljiva matematička osobina određenog mehaničkog sistema. Ona se može posmatrati kao poseban slučaj odražavanja energije. Filologija Lajbnic je bio zavidan student jezika, posebno zainteresovan za vokabular i gramatiku. Poricao je široko rasprostranjeno verovanje u hrišćanskom obrazovanju njegovog vremena, da je hebrejski prvobitni jezik ljudske rase. Bavio se poreklom slovenskih jezika, bio je svestan postojanja sanskrita kao i njegovog značaja, i fascinirao ga je klasičan kineski jezik. Priroda Prirodnonaučni pojam kontinuiteta prvi je odredio Aristotel. Do obuhvatnijeg značenja on dolazi kod Lajbnica u ubeđenju da priroda ne čini skokove (natura non facit saltus), da se sve upliće u celinu. Ovoj predstavi je dao izraz u takozvanom zakonu kontinuiteta (lex continui), pri čemu je primenom ovog zakona pobijao fiziku Dekarta i Malbranša. „Ništa se ne događa u jednom udaru, a jedno je od mojih najvažnijih načela da priroda nikad ne čini skokove. Ovaj sam stav nazvao zakonom kontinuiteta“, kaže Lajbnic. Moderna teorijska fizika od razvoja kvantne teorije i njenog uobličenja (kvantna mehanika), naprotiv, radije pak pretpostavlja diskontinualne, u smislu ovog navoda „skokovite“ prelaze od jednog u neko drugo stanje. Lajbnic je uveo pojam aktuelno beskonačnog koji je prihvatio i Imanuel Kant. Prvi je uveo pojam involucije (involution), što je po njemu razvoj prema smrti, nasuprot evoluciji, razvoj prema životu. Pravo Prema Lajbnicu celokupno pravo služi zajedničkom dobru, koje je on gledao kao održavanje i napredovanje univerzuma. U prvom redu samog božanskog svetskog poretka, u drugom redu ljudskog roda i u trećem redu države. Na kraju životnog puta Umro je zaboravljen, u Hanoveru 14. novembra 1716., savladan bolešću i usred spora oko svog pronalaska infinitezimalnog računa. Njegov grob obeležen je tek posle 50 godina, odnosno 1766....

Prikaži sve...
1,390RSD
forward
forward
Detaljnije

Lepo očuvano Izdavač: Kultura, Beograd Edicija: Mala filozofska biblioteka Povez: Broširan Broj strana: 49 Aristotel (grč. Αριστοτέλης;[2] 384. p. n. e. — 322. p. n. e.)[3] bio je starogrčki filozof i besednik, Platonov učenik i jedna od najuticajnijih ličnosti u istoriji evropske misli.[4][5][6] Aristotel je bio grčki filozof i naučnik koji je rođen makedonskom gradu Stagira, Halkidiki, na severnoj periferiji klasične Grčke.[7] Njegov otac, Nikomah, je umro kad je Aristotel bio dete, nakon čega je Proksenus od Atarneusa postao njegov staratelj. U svojoj osamnaestoj godini, pošao je na Platonovu akademiju u Atini i ostao je tamo do svoje 37. godine (c. 347 p. n. e.). Njegovi rukopisi pokrivaju mnoge teme – uključujući fiziku, biologiju, zoologiju, metafiziku, logiku, etiku, estetiku, poetiku, pozorište, muziku, retoriku, lingvistiku, politiku i vladu – i čine prvi sveobuhvatni sistem zapadne filozofije. Ubrzo nakon Platonove smrti, Aristotel je napustio Atinu i, na zahtev Filipa Makedonskog, podučavao je Aleksandara Velikog počevši od 343 p. n. e.[5] Prema pisanju Encyclopædia Britannica, „Aristotel je bio prvi istinski naučnik u istoriji ... [i] svaki naučnik mu duguje.“[6] Podučavanje Aleksandra Velikog je pružilo Aristotelu mnoge mogućnosti i obilje materijala. On je osnovao biblioteku u Liceju koja je pomagala u produkciji mnogih od njegovih stotina knjiga. Činjenica da je Aristotel bio Platonov učenik je doprinela njegovom ranom gledištu platonizma, međutim nakon Platonove smrti, Aristotel se uronio u empirijska izučavanja i udaljio se od platonizma u korist empirizma.[8] On je verovao da svi ljudski koncepti i svo njihovo znanje ultimativno bazirani na percepciji. Aristotelovo gledište na prirodne nauke predstavlja podlogu u osnovi mnogih njegovih radova. Aristotelovi pogledi na fizičke nauke temeljno je oblikovalo gledište srednovekovnih učenjaka. Njegov uticaj doseže do renesanse i nije bio sistematski zamenjen do prosvetiteljstva i teorija kao što je klasična mehanika. Neka od Aristotelovih zooloških opažanja, kao što je hectocotyl (reproduktivna) ruka oktopusa, nisu potvrđena, niti osporena do 19. veka. Njegovi radovi sadrže najraniju poznatu studiju logike, koja je inkorporirana u kasnom 19. veku u modernu formalnu logiku. Aristotel je rođen u Stagiri, grčkoj koloniji na makedonskom poluostrvu. Njegov otac, Nikomah, radio je kao dvorski lekar kod kralja Amintasa III Makedonskog, dede Aleksandra Velikog. Veruje se da su Aristotelovi preci bili na ovoj dužnosti i kod ranijih makedonskih kraljeva. Pretpostavlja sa da je, kada je otišao u Atinu sa 18 godina, Aristotel imao i neka znanja iz medicine koja je dobio od oca. Od 18. do 37. godine pohađa Akademiju kao Platonov učenik. Razlike u filozofskim stavovima bile su osnova za stvaranje raznih legendi o odnosima Platona i Aristotela. Evidentno je da su neslaganja u stavovima postojala, pošto Aristotel vrlo rano pokazuje interesovanje za prirodne činjenice i zakone za razliku od Platonovih idealističkih stavova. Bilo kako bilo, nema nikakvih dokaza da su za vreme Aristotelovog boravka na Akademiji odnosi između dvojice filozofa bili zategnuti ili prekinuti. Zapravo, Aristotelovo ponašanje posle Platonove smrti, njegova stalna saradnja sa Ksenokratom i ostalim platonistima, te reference na Platonovo učenje u njegovim delima dokazuju da je, iako je i bilo sukoba mišljenja između Aristotela i Platona, među njima postojalo duboko razumevanje i tolerancija. Takođe, priče kažu da je Aristotel najviše neslaganja imao sa epikurejcima, koji su bili poznati i kao „klevetnici“. Iako se ovakve legende često nalaze kod ranih hrišćanskih pisaca kao što su Justin Isposnik i Grigorije Nazijazin, razlog leži najviše u čvrstom sistemu vrednosti koji su Aristotelu usadili rani hrišćanski jeretici, a ponajmanje u nekom dobro utemeljenom istorijskom verovanju. Posle Platonove smrti (346. p. n. e.), Aristotel sa Ksenokratom odlazi na dvor Hermijasa, vladara Atarnije u Maloj Aziji i ženi se sa Pitijom, vladarevom nećakinjom i pokćerkom. Godine 344. p. n. e., Hermijas gine u pobuni i Aristotel sa porodicom odlazi u Mitilenu. Posle godinu-dve, na poziv kralja Filipa II Makedonskog odlazi u rodnu Stagiru da bi postao tutor Aleksandra Velikog, koji je tad imao 13 godina. Plutarh piše da Aristotel Aleksandra nije poučavao samo etici i politici već ga je upućivao i u daleko dublje tajne filozofije. Mnoštvo je dokaza da je Aleksandar mnogo naučio od Aristotela, a i da je Aristotel imao koristi poučavajući mladog princa (iako se Bertrand Rasel ne slaže s ovim navodima). Zahvaljujući ovom uticaju, Aristotel je od Aleksandra dobijao značajna novčana sredstva za nabavku knjiga, a po svemu sudeći, obnovljena moć Aleksandrove vojske posledica je, barem delimično, i Aleksandrovog odnosa sa Aristotelom. Po navodima Plutarha i Diogena, Filip je 340. p. n. e. godine do temelja spalio Stagiru, Aristotelov rodni grad, ali je Aristotel uspeo nagovoriti Aleksandra da ga obnovi. Oko 335. p. n. e., Aleksandar odlazi u pohod na Aziju a Aristotel, koji je od Aleksandrovog dolaska na makedonski tron imao ulogu neslužbenog savetnika, odlazi ponovo u Atinu i otvara sopstvenu filozofsku školu. Moguće je da je Aristotel, po kazivanju Aula Gelijusa, vodio školu retorike za vreme svog prethodnog boravka u Atini; ali, sada, sledeći Platonov primer, on počinje davati redovne časove iz filozofije u gimnazijumu sagrađenom u čast Apolona Likijskog, po kojem je škola dobila ime Licej.[9] (Škola je takođe bila poznata i kao peripatetička škola pošto je Aristotel voleo da raspravlja o filozofskim pitanjima sa svojim učenicima šetajući gore-dole, peripateo (lagana šetnja), peripatoi (oko gimnazijuma).[10] Za vreme trinaestogodišnjeg perioda (335. p. n. e. — 322. p. n. e.) koji je proveo poučavajući u Liceju, Aristotel je napisao većinu svojih dela. Po uzoru na Platona, piše „Dijaloge“ u kojima popularnim jezikom iznosi osnove svog učenja. Takođe je napisao nekoliko studija (o kojima će biti govora kasnije) o fizici, metafizici itd; u kojima je stil formalniji, a jezik učeniji nego u „Dijalozima“. Ovi tekstovi otkrivaju u kojoj meri su mu bili korisni materijali i pisani izvori koje mu je Aleksandar svojevremeno obezbedio. Oni posebno pokazuju povezanost njegovog učenja sa radovima grčkih filozofa, njegovih prethodnika, te kako je nastavio, lično ili preko drugih filozofa, istraživanja prirodnih pojava. Plinije tvrdi da je Aleksandar stavio pod Aristotelov nadzor sve lovce, ribare i ptičare u svom kraljevstvu te sve nadzornike kraljevskih šuma, jezera, močvara i pašnjaka što je bilo vrlo verovatno uzevši u obzir Aristotelova radove iz zoologije. Aristotel je izuzetno dobro poznavao radove svojih prethodnika tako da Strabon konstatuje da je Aristotel među prvima počeo stvarati veliku biblioteku. U poslednjim godinama Aristotelovog života odnosi između njega i Aleksandra postaju veoma zategnuti zahvaljujući stradanju i kazni Kalistenovoj kojeg je Aristotel svojevremeno preporučio Aleksandru. Bez obzira na sve, u Atini su i dalje smatrali Aristotela Aleksandrovim prijateljem i predstavnikom Makedonije. Naravno, nakon što je u Atinu stigla vest o Aleksandrovoj smrti i nakon što izbili nemiri koji su doveli do Lamijskog rata Aristotel postaje nepopularan kao i svi Makedonci. Atmosferu nepoštovanja i omraženosti, koju su svojevremeno osetili Anaksagora i Sokrat, doživeo je, još bezrazložnije, i sam Aristotel. Napušta Atinu izjavljujući (po svedočenjima mnogih antičkih autoriteta) da neće pružiti Atinjanima šansu da se po treći put ogreše o filozofiju. Nalazi utočište na svom seoskom imanju u Kalkisu u Eubeji gde i umire sledeće godine, 322. p. n. e. od dugogodišnje bolesti. Priče da je njegova smrt posledica trovanja kukutom, kao i legenda da se bacio u more „jer nije mogao objasniti talase“ nemaju istorijske osnove. Vrlo malo se zna o Aristotelovom fizičkom izgledu osim iz njemu nenaklonjenih izvora. Njegove očuvane statue i biste, koje verovatno datiraju iz prvih godina delovanja peripatetičke škole, prikazuju čoveka prosečne visine, oštrih crta lica i pronicljivog pogleda. Na osnovu njegovih tekstova, testamenta (nesumnjivo verodostojnog), odlomaka iz njegovih pisama te svedočenja njegovih objektivnih savremenika zaključujemo da se radilo o visokomoralnom čoveku blage naravi, posvećenog porodici i prijateljima, koji je blago postupao sa svojim robovima, bio milostiv prema svojim neprijateljima i protivnicima i zahvalan svojim dobročiniteljima. Kada je platonizam prestao da dominira svetom hrišćanske misli i kada su se Aristotelovi radovi počeli proučavati objektivno i bez straha, u delima hrišćanskih pisaca 13. veka (isto kao i kod objektivnih pisaca njegovog vremena) Aristotel se opisuje kao čovek blage naravi, dostojanstvene pojave, skroman i bez ijednog moralnog nedostatka, „najveći od onih koji znaju“. Oblici državnog uređenja Aristotel je, za razliku od Platona, više bio orijentisan na istraživanje postojećeg društva. Analizom 158 ustava grčkih polisa, on je podelio državna uređenja na: dobra (monarhija, aristokratija i republika) i loša (tiranija, oligarhija i demokratija).[11] Aristotelovi spisi Glavni članak: Aristotelovi spisi Dela: `Organon` (sakupljeni Aristotelovi logički spisi), Poetika (O pesničkoj umetnosti), `Retorika`, `Nikomahova etika` (Nikomah je bio njegov otac), `Politika`, `Metafizika`, `Fizika`, `O duši`. Njegovi naslednici su učili po njegovim knjigama i po knjigama koje su pisane na osnovu njegovih dela. A, on je prvi koji je objektivno opisao svo dotadašnje znanje. Naglasak na `objektivno`, jer drugi filozofi su pisali dela, pesme, dijaloge. Aristotel je pisao udžbenike, u kojima je prvi put uredno pobrojao sva dotadašnja znanja (i, naravno, dopisao otkrića do kojih je i sam došao).

Prikaži sve...
980RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! ARISTOTEL - Retorika 1/2/3 (preveo Marko Višić) Izdavač: nezavisna izdanja 40 Godina izdanja: 1987. Povez: broš Broj strana: 304 Pismo: latinica Aristotel (grč. Αριστοτέλης;[2] 384. p. n. e. — 322. p. n. e.)[3] bio je starogrčki filozof i besednik, Platonov učenik i jedna od najuticajnijih ličnosti u istoriji evropske misli.[4][5][6] Aristotel je bio grčki filozof i naučnik koji je rođen makedonskom gradu Stagira, Halkidiki, na severnoj periferiji klasične Grčke.[7] Njegov otac, Nikomah, je umro kad je Aristotel bio dete, nakon čega je Proksenus od Atarneusa postao njegov staratelj. U svojoj osamnaestoj godini, pošao je na Platonovu akademiju u Atini i ostao je tamo do svoje 37. godine (c. 347 p. n. e.). Njegovi rukopisi pokrivaju mnoge teme – uključujući fiziku, biologiju, zoologiju, metafiziku, logiku, etiku, estetiku, poetiku, pozorište, muziku, retoriku, lingvistiku, politiku i vladu – i čine prvi sveobuhvatni sistem zapadne filozofije. Ubrzo nakon Platonove smrti, Aristotel je napustio Atinu i, na zahtev Filipa Makedonskog, podučavao je Aleksandara Velikog počevši od 343 p. n. e.[5] Prema pisanju Encyclopædia Britannica, „Aristotel je bio prvi istinski naučnik u istoriji ... [i] svaki naučnik mu duguje.“[6] Podučavanje Aleksandra Velikog je pružilo Aristotelu mnoge mogućnosti i obilje materijala. On je osnovao biblioteku u Liceju koja je pomagala u produkciji mnogih od njegovih stotina knjiga. Činjenica da je Aristotel bio Platonov učenik je doprinela njegovom ranom gledištu platonizma, međutim nakon Platonove smrti, Aristotel se uronio u empirijska izučavanja i udaljio se od platonizma u korist empirizma.[8] On je verovao da svi ljudski koncepti i svo njihovo znanje ultimativno bazirani na percepciji. Aristotelovo gledište na prirodne nauke predstavlja podlogu u osnovi mnogih njegovih radova. Aristotelovi pogledi na fizičke nauke temeljno je oblikovalo gledište srednovekovnih učenjaka. Njegov uticaj doseže do renesanse i nije bio sistematski zamenjen do prosvetiteljstva i teorija kao što je klasična mehanika. Neka od Aristotelovih zooloških opažanja, kao što je hectocotyl (reproduktivna) ruka oktopusa, nisu potvrđena, niti osporena do 19. veka. Njegovi radovi sadrže najraniju poznatu studiju logike, koja je inkorporirana u kasnom 19. veku u modernu formalnu logiku. Aristotel je rođen u Stagiri, grčkoj koloniji na makedonskom poluostrvu. Njegov otac, Nikomah, radio je kao dvorski lekar kod kralja Amintasa III Makedonskog, dede Aleksandra Velikog. Veruje se da su Aristotelovi preci bili na ovoj dužnosti i kod ranijih makedonskih kraljeva. Pretpostavlja sa da je, kada je otišao u Atinu sa 18 godina, Aristotel imao i neka znanja iz medicine koja je dobio od oca. Od 18. do 37. godine pohađa Akademiju kao Platonov učenik. Razlike u filozofskim stavovima bile su osnova za stvaranje raznih legendi o odnosima Platona i Aristotela. Evidentno je da su neslaganja u stavovima postojala, pošto Aristotel vrlo rano pokazuje interesovanje za prirodne činjenice i zakone za razliku od Platonovih idealističkih stavova. Bilo kako bilo, nema nikakvih dokaza da su za vreme Aristotelovog boravka na Akademiji odnosi između dvojice filozofa bili zategnuti ili prekinuti. Zapravo, Aristotelovo ponašanje posle Platonove smrti, njegova stalna saradnja sa Ksenokratom i ostalim platonistima, te reference na Platonovo učenje u njegovim delima dokazuju da je, iako je i bilo sukoba mišljenja između Aristotela i Platona, među njima postojalo duboko razumevanje i tolerancija. Takođe, priče kažu da je Aristotel najviše neslaganja imao sa epikurejcima, koji su bili poznati i kao „klevetnici“. Iako se ovakve legende često nalaze kod ranih hrišćanskih pisaca kao što su Justin Isposnik i Grigorije Nazijazin, razlog leži najviše u čvrstom sistemu vrednosti koji su Aristotelu usadili rani hrišćanski jeretici, a ponajmanje u nekom dobro utemeljenom istorijskom verovanju. Posle Platonove smrti (346. p. n. e.), Aristotel sa Ksenokratom odlazi na dvor Hermijasa, vladara Atarnije u Maloj Aziji i ženi se sa Pitijom, vladarevom nećakinjom i pokćerkom. Godine 344. p. n. e., Hermijas gine u pobuni i Aristotel sa porodicom odlazi u Mitilenu. Posle godinu-dve, na poziv kralja Filipa II Makedonskog odlazi u rodnu Stagiru da bi postao tutor Aleksandra Velikog, koji je tad imao 13 godina. Plutarh piše da Aristotel Aleksandra nije poučavao samo etici i politici već ga je upućivao i u daleko dublje tajne filozofije. Mnoštvo je dokaza da je Aleksandar mnogo naučio od Aristotela, a i da je Aristotel imao koristi poučavajući mladog princa (iako se Bertrand Rasel ne slaže s ovim navodima). Zahvaljujući ovom uticaju, Aristotel je od Aleksandra dobijao značajna novčana sredstva za nabavku knjiga, a po svemu sudeći, obnovljena moć Aleksandrove vojske posledica je, barem delimično, i Aleksandrovog odnosa sa Aristotelom. Po navodima Plutarha i Diogena, Filip je 340. p. n. e. godine do temelja spalio Stagiru, Aristotelov rodni grad, ali je Aristotel uspeo nagovoriti Aleksandra da ga obnovi. Oko 335. p. n. e., Aleksandar odlazi u pohod na Aziju a Aristotel, koji je od Aleksandrovog dolaska na makedonski tron imao ulogu neslužbenog savetnika, odlazi ponovo u Atinu i otvara sopstvenu filozofsku školu. Moguće je da je Aristotel, po kazivanju Aula Gelijusa, vodio školu retorike za vreme svog prethodnog boravka u Atini; ali, sada, sledeći Platonov primer, on počinje davati redovne časove iz filozofije u gimnazijumu sagrađenom u čast Apolona Likijskog, po kojem je škola dobila ime Licej.[9] (Škola je takođe bila poznata i kao peripatetička škola pošto je Aristotel voleo da raspravlja o filozofskim pitanjima sa svojim učenicima šetajući gore-dole, peripateo (lagana šetnja), peripatoi (oko gimnazijuma).[10] Za vreme trinaestogodišnjeg perioda (335. p. n. e. — 322. p. n. e.) koji je proveo poučavajući u Liceju, Aristotel je napisao većinu svojih dela. Po uzoru na Platona, piše „Dijaloge“ u kojima popularnim jezikom iznosi osnove svog učenja. Takođe je napisao nekoliko studija (o kojima će biti govora kasnije) o fizici, metafizici itd; u kojima je stil formalniji, a jezik učeniji nego u „Dijalozima“. Ovi tekstovi otkrivaju u kojoj meri su mu bili korisni materijali i pisani izvori koje mu je Aleksandar svojevremeno obezbedio. Oni posebno pokazuju povezanost njegovog učenja sa radovima grčkih filozofa, njegovih prethodnika, te kako je nastavio, lično ili preko drugih filozofa, istraživanja prirodnih pojava. Plinije tvrdi da je Aleksandar stavio pod Aristotelov nadzor sve lovce, ribare i ptičare u svom kraljevstvu te sve nadzornike kraljevskih šuma, jezera, močvara i pašnjaka što je bilo vrlo verovatno uzevši u obzir Aristotelova radove iz zoologije. Aristotel je izuzetno dobro poznavao radove svojih prethodnika tako da Strabon konstatuje da je Aristotel među prvima počeo stvarati veliku biblioteku. U poslednjim godinama Aristotelovog života odnosi između njega i Aleksandra postaju veoma zategnuti zahvaljujući stradanju i kazni Kalistenovoj kojeg je Aristotel svojevremeno preporučio Aleksandru. Bez obzira na sve, u Atini su i dalje smatrali Aristotela Aleksandrovim prijateljem i predstavnikom Makedonije. Naravno, nakon što je u Atinu stigla vest o Aleksandrovoj smrti i nakon što izbili nemiri koji su doveli do Lamijskog rata Aristotel postaje nepopularan kao i svi Makedonci. Atmosferu nepoštovanja i omraženosti, koju su svojevremeno osetili Anaksagora i Sokrat, doživeo je, još bezrazložnije, i sam Aristotel. Napušta Atinu izjavljujući (po svedočenjima mnogih antičkih autoriteta) da neće pružiti Atinjanima šansu da se po treći put ogreše o filozofiju. Nalazi utočište na svom seoskom imanju u Kalkisu u Eubeji gde i umire sledeće godine, 322. p. n. e. od dugogodišnje bolesti. Priče da je njegova smrt posledica trovanja kukutom, kao i legenda da se bacio u more „jer nije mogao objasniti talase“ nemaju istorijske osnove. Vrlo malo se zna o Aristotelovom fizičkom izgledu osim iz njemu nenaklonjenih izvora. Njegove očuvane statue i biste, koje verovatno datiraju iz prvih godina delovanja peripatetičke škole, prikazuju čoveka prosečne visine, oštrih crta lica i pronicljivog pogleda. Na osnovu njegovih tekstova, testamenta (nesumnjivo verodostojnog), odlomaka iz njegovih pisama te svedočenja njegovih objektivnih savremenika zaključujemo da se radilo o visokomoralnom čoveku blage naravi, posvećenog porodici i prijateljima, koji je blago postupao sa svojim robovima, bio milostiv prema svojim neprijateljima i protivnicima i zahvalan svojim dobročiniteljima. Kada je platonizam prestao da dominira svetom hrišćanske misli i kada su se Aristotelovi radovi počeli proučavati objektivno i bez straha, u delima hrišćanskih pisaca 13. veka (isto kao i kod objektivnih pisaca njegovog vremena) Aristotel se opisuje kao čovek blage naravi, dostojanstvene pojave, skroman i bez ijednog moralnog nedostatka, „najveći od onih koji znaju“. Oblici državnog uređenja Aristotel je, za razliku od Platona, više bio orijentisan na istraživanje postojećeg društva. Analizom 158 ustava grčkih polisa, on je podelio državna uređenja na: dobra (monarhija, aristokratija i republika) i loša (tiranija, oligarhija i demokratija).[11] Aristotelovi spisi Glavni članak: Aristotelovi spisi Dela: `Organon` (sakupljeni Aristotelovi logički spisi), Poetika (O pesničkoj umetnosti), `Retorika`, `Nikomahova etika` (Nikomah je bio njegov otac), `Politika`, `Metafizika`, `Fizika`, `O duši`. Njegovi naslednici su učili po njegovim knjigama i po knjigama koje su pisane na osnovu njegovih dela. A, on je prvi koji je objektivno opisao svo dotadašnje znanje. Naglasak na `objektivno`, jer drugi filozofi su pisali dela, pesme, dijaloge. Aristotel je pisao udžbenike, u kojima je prvi put uredno pobrojao sva dotadašnja znanja (i, naravno, dopisao otkrića do kojih je i sam došao).

Prikaži sve...
1,390RSD
forward
forward
Detaljnije

U dobrom stanju! Aristotel- Nauk o pjesničkom umijeću Izdavac : Studentski centar Godina : 1977 Povez : mek Stranica: 298 Aristotel (grč. Αριστοτέλης;[2] 384. p. n. e. — 322. p. n. e.)[3] bio je starogrčki filozof i besednik, Platonov učenik i jedna od najuticajnijih ličnosti u istoriji evropske misli.[4][5][6] Aristotel je bio grčki filozof i naučnik koji je rođen makedonskom gradu Stagira, Halkidiki, na severnoj periferiji klasične Grčke.[7] Njegov otac, Nikomah, je umro kad je Aristotel bio dete, nakon čega je Proksenus od Atarneusa postao njegov staratelj. U svojoj osamnaestoj godini, pošao je na Platonovu akademiju u Atini i ostao je tamo do svoje 37. godine (c. 347 p. n. e.). Njegovi rukopisi pokrivaju mnoge teme – uključujući fiziku, biologiju, zoologiju, metafiziku, logiku, etiku, estetiku, poetiku, pozorište, muziku, retoriku, lingvistiku, politiku i vladu – i čine prvi sveobuhvatni sistem zapadne filozofije. Ubrzo nakon Platonove smrti, Aristotel je napustio Atinu i, na zahtev Filipa Makedonskog, podučavao je Aleksandara Velikog počevši od 343 p. n. e.[5] Prema pisanju Encyclopædia Britannica, „Aristotel je bio prvi istinski naučnik u istoriji ... [i] svaki naučnik mu duguje.“[6] Podučavanje Aleksandra Velikog je pružilo Aristotelu mnoge mogućnosti i obilje materijala. On je osnovao biblioteku u Liceju koja je pomagala u produkciji mnogih od njegovih stotina knjiga. Činjenica da je Aristotel bio Platonov učenik je doprinela njegovom ranom gledištu platonizma, međutim nakon Platonove smrti, Aristotel se uronio u empirijska izučavanja i udaljio se od platonizma u korist empirizma.[8] On je verovao da svi ljudski koncepti i svo njihovo znanje ultimativno bazirani na percepciji. Aristotelovo gledište na prirodne nauke predstavlja podlogu u osnovi mnogih njegovih radova. Aristotelovi pogledi na fizičke nauke temeljno je oblikovalo gledište srednovekovnih učenjaka. Njegov uticaj doseže do renesanse i nije bio sistematski zamenjen do prosvetiteljstva i teorija kao što je klasična mehanika. Neka od Aristotelovih zooloških opažanja, kao što je hectocotyl (reproduktivna) ruka oktopusa, nisu potvrđena, niti osporena do 19. veka. Njegovi radovi sadrže najraniju poznatu studiju logike, koja je inkorporirana u kasnom 19. veku u modernu formalnu logiku. Aristotel je rođen u Stagiri, grčkoj koloniji na makedonskom poluostrvu. Njegov otac, Nikomah, radio je kao dvorski lekar kod kralja Amintasa III Makedonskog, dede Aleksandra Velikog. Veruje se da su Aristotelovi preci bili na ovoj dužnosti i kod ranijih makedonskih kraljeva. Pretpostavlja sa da je, kada je otišao u Atinu sa 18 godina, Aristotel imao i neka znanja iz medicine koja je dobio od oca. Od 18. do 37. godine pohađa Akademiju kao Platonov učenik. Razlike u filozofskim stavovima bile su osnova za stvaranje raznih legendi o odnosima Platona i Aristotela. Evidentno je da su neslaganja u stavovima postojala, pošto Aristotel vrlo rano pokazuje interesovanje za prirodne činjenice i zakone za razliku od Platonovih idealističkih stavova. Bilo kako bilo, nema nikakvih dokaza da su za vreme Aristotelovog boravka na Akademiji odnosi između dvojice filozofa bili zategnuti ili prekinuti. Zapravo, Aristotelovo ponašanje posle Platonove smrti, njegova stalna saradnja sa Ksenokratom i ostalim platonistima, te reference na Platonovo učenje u njegovim delima dokazuju da je, iako je i bilo sukoba mišljenja između Aristotela i Platona, među njima postojalo duboko razumevanje i tolerancija. Takođe, priče kažu da je Aristotel najviše neslaganja imao sa epikurejcima, koji su bili poznati i kao „klevetnici“. Iako se ovakve legende često nalaze kod ranih hrišćanskih pisaca kao što su Justin Isposnik i Grigorije Nazijazin, razlog leži najviše u čvrstom sistemu vrednosti koji su Aristotelu usadili rani hrišćanski jeretici, a ponajmanje u nekom dobro utemeljenom istorijskom verovanju. Posle Platonove smrti (346. p. n. e.), Aristotel sa Ksenokratom odlazi na dvor Hermijasa, vladara Atarnije u Maloj Aziji i ženi se sa Pitijom, vladarevom nećakinjom i pokćerkom. Godine 344. p. n. e., Hermijas gine u pobuni i Aristotel sa porodicom odlazi u Mitilenu. Posle godinu-dve, na poziv kralja Filipa II Makedonskog odlazi u rodnu Stagiru da bi postao tutor Aleksandra Velikog, koji je tad imao 13 godina. Plutarh piše da Aristotel Aleksandra nije poučavao samo etici i politici već ga je upućivao i u daleko dublje tajne filozofije. Mnoštvo je dokaza da je Aleksandar mnogo naučio od Aristotela, a i da je Aristotel imao koristi poučavajući mladog princa (iako se Bertrand Rasel ne slaže s ovim navodima). Zahvaljujući ovom uticaju, Aristotel je od Aleksandra dobijao značajna novčana sredstva za nabavku knjiga, a po svemu sudeći, obnovljena moć Aleksandrove vojske posledica je, barem delimično, i Aleksandrovog odnosa sa Aristotelom. Po navodima Plutarha i Diogena, Filip je 340. p. n. e. godine do temelja spalio Stagiru, Aristotelov rodni grad, ali je Aristotel uspeo nagovoriti Aleksandra da ga obnovi. Oko 335. p. n. e., Aleksandar odlazi u pohod na Aziju a Aristotel, koji je od Aleksandrovog dolaska na makedonski tron imao ulogu neslužbenog savetnika, odlazi ponovo u Atinu i otvara sopstvenu filozofsku školu. Moguće je da je Aristotel, po kazivanju Aula Gelijusa, vodio školu retorike za vreme svog prethodnog boravka u Atini; ali, sada, sledeći Platonov primer, on počinje davati redovne časove iz filozofije u gimnazijumu sagrađenom u čast Apolona Likijskog, po kojem je škola dobila ime Licej.[9] (Škola je takođe bila poznata i kao peripatetička škola pošto je Aristotel voleo da raspravlja o filozofskim pitanjima sa svojim učenicima šetajući gore-dole, peripateo (lagana šetnja), peripatoi (oko gimnazijuma).[10] Za vreme trinaestogodišnjeg perioda (335. p. n. e. — 322. p. n. e.) koji je proveo poučavajući u Liceju, Aristotel je napisao većinu svojih dela. Po uzoru na Platona, piše „Dijaloge“ u kojima popularnim jezikom iznosi osnove svog učenja. Takođe je napisao nekoliko studija (o kojima će biti govora kasnije) o fizici, metafizici itd; u kojima je stil formalniji, a jezik učeniji nego u „Dijalozima“. Ovi tekstovi otkrivaju u kojoj meri su mu bili korisni materijali i pisani izvori koje mu je Aleksandar svojevremeno obezbedio. Oni posebno pokazuju povezanost njegovog učenja sa radovima grčkih filozofa, njegovih prethodnika, te kako je nastavio, lično ili preko drugih filozofa, istraživanja prirodnih pojava. Plinije tvrdi da je Aleksandar stavio pod Aristotelov nadzor sve lovce, ribare i ptičare u svom kraljevstvu te sve nadzornike kraljevskih šuma, jezera, močvara i pašnjaka što je bilo vrlo verovatno uzevši u obzir Aristotelova radove iz zoologije. Aristotel je izuzetno dobro poznavao radove svojih prethodnika tako da Strabon konstatuje da je Aristotel među prvima počeo stvarati veliku biblioteku. U poslednjim godinama Aristotelovog života odnosi između njega i Aleksandra postaju veoma zategnuti zahvaljujući stradanju i kazni Kalistenovoj kojeg je Aristotel svojevremeno preporučio Aleksandru. Bez obzira na sve, u Atini su i dalje smatrali Aristotela Aleksandrovim prijateljem i predstavnikom Makedonije. Naravno, nakon što je u Atinu stigla vest o Aleksandrovoj smrti i nakon što izbili nemiri koji su doveli do Lamijskog rata Aristotel postaje nepopularan kao i svi Makedonci. Atmosferu nepoštovanja i omraženosti, koju su svojevremeno osetili Anaksagora i Sokrat, doživeo je, još bezrazložnije, i sam Aristotel. Napušta Atinu izjavljujući (po svedočenjima mnogih antičkih autoriteta) da neće pružiti Atinjanima šansu da se po treći put ogreše o filozofiju. Nalazi utočište na svom seoskom imanju u Kalkisu u Eubeji gde i umire sledeće godine, 322. p. n. e. od dugogodišnje bolesti. Priče da je njegova smrt posledica trovanja kukutom, kao i legenda da se bacio u more „jer nije mogao objasniti talase“ nemaju istorijske osnove. Vrlo malo se zna o Aristotelovom fizičkom izgledu osim iz njemu nenaklonjenih izvora. Njegove očuvane statue i biste, koje verovatno datiraju iz prvih godina delovanja peripatetičke škole, prikazuju čoveka prosečne visine, oštrih crta lica i pronicljivog pogleda. Na osnovu njegovih tekstova, testamenta (nesumnjivo verodostojnog), odlomaka iz njegovih pisama te svedočenja njegovih objektivnih savremenika zaključujemo da se radilo o visokomoralnom čoveku blage naravi, posvećenog porodici i prijateljima, koji je blago postupao sa svojim robovima, bio milostiv prema svojim neprijateljima i protivnicima i zahvalan svojim dobročiniteljima. Kada je platonizam prestao da dominira svetom hrišćanske misli i kada su se Aristotelovi radovi počeli proučavati objektivno i bez straha, u delima hrišćanskih pisaca 13. veka (isto kao i kod objektivnih pisaca njegovog vremena) Aristotel se opisuje kao čovek blage naravi, dostojanstvene pojave, skroman i bez ijednog moralnog nedostatka, „najveći od onih koji znaju“. Oblici državnog uređenja Aristotel je, za razliku od Platona, više bio orijentisan na istraživanje postojećeg društva. Analizom 158 ustava grčkih polisa, on je podelio državna uređenja na: dobra (monarhija, aristokratija i republika) i loša (tiranija, oligarhija i demokratija).[11] Aristotelovi spisi Glavni članak: Aristotelovi spisi Dela: `Organon` (sakupljeni Aristotelovi logički spisi), Poetika (O pesničkoj umetnosti), `Retorika`, `Nikomahova etika` (Nikomah je bio njegov otac), `Politika`, `Metafizika`, `Fizika`, `O duši`. Njegovi naslednici su učili po njegovim knjigama i po knjigama koje su pisane na osnovu njegovih dela. A, on je prvi koji je objektivno opisao svo dotadašnje znanje. Naglasak na `objektivno`, jer drugi filozofi su pisali dela, pesme, dijaloge. Aristotel je pisao udžbenike, u kojima je prvi put uredno pobrojao sva dotadašnja znanja (i, naravno, dopisao otkrića do kojih je i sam došao).

Prikaži sve...
1,290RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Aristotel (grč. Αριστοτέλης;[2] 384. p. n. e. — 322. p. n. e.)[3] bio je starogrčki filozof i besednik, Platonov učenik i jedna od najuticajnijih ličnosti u istoriji evropske misli.[4][5][6] Aristotel je bio grčki filozof i naučnik koji je rođen makedonskom gradu Stagira, Halkidiki, na severnoj periferiji klasične Grčke.[7] Njegov otac, Nikomah, je umro kad je Aristotel bio dete, nakon čega je Proksenus od Atarneusa postao njegov staratelj. U svojoj osamnaestoj godini, pošao je na Platonovu akademiju u Atini i ostao je tamo do svoje 37. godine (c. 347 p. n. e.). Njegovi rukopisi pokrivaju mnoge teme – uključujući fiziku, biologiju, zoologiju, metafiziku, logiku, etiku, estetiku, poetiku, pozorište, muziku, retoriku, lingvistiku, politiku i vladu – i čine prvi sveobuhvatni sistem zapadne filozofije. Ubrzo nakon Platonove smrti, Aristotel je napustio Atinu i, na zahtev Filipa Makedonskog, podučavao je Aleksandara Velikog počevši od 343 p. n. e.[5] Prema pisanju Encyclopædia Britannica, „Aristotel je bio prvi istinski naučnik u istoriji ... [i] svaki naučnik mu duguje.“[6] Podučavanje Aleksandra Velikog je pružilo Aristotelu mnoge mogućnosti i obilje materijala. On je osnovao biblioteku u Liceju koja je pomagala u produkciji mnogih od njegovih stotina knjiga. Činjenica da je Aristotel bio Platonov učenik je doprinela njegovom ranom gledištu platonizma, međutim nakon Platonove smrti, Aristotel se uronio u empirijska izučavanja i udaljio se od platonizma u korist empirizma.[8] On je verovao da svi ljudski koncepti i svo njihovo znanje ultimativno bazirani na percepciji. Aristotelovo gledište na prirodne nauke predstavlja podlogu u osnovi mnogih njegovih radova. Aristotelovi pogledi na fizičke nauke temeljno je oblikovalo gledište srednovekovnih učenjaka. Njegov uticaj doseže do renesanse i nije bio sistematski zamenjen do prosvetiteljstva i teorija kao što je klasična mehanika. Neka od Aristotelovih zooloških opažanja, kao što je hectocotyl (reproduktivna) ruka oktopusa, nisu potvrđena, niti osporena do 19. veka. Njegovi radovi sadrže najraniju poznatu studiju logike, koja je inkorporirana u kasnom 19. veku u modernu formalnu logiku. Aristotel je rođen u Stagiri, grčkoj koloniji na makedonskom poluostrvu. Njegov otac, Nikomah, radio je kao dvorski lekar kod kralja Amintasa III Makedonskog, dede Aleksandra Velikog. Veruje se da su Aristotelovi preci bili na ovoj dužnosti i kod ranijih makedonskih kraljeva. Pretpostavlja sa da je, kada je otišao u Atinu sa 18 godina, Aristotel imao i neka znanja iz medicine koja je dobio od oca. Od 18. do 37. godine pohađa Akademiju kao Platonov učenik. Razlike u filozofskim stavovima bile su osnova za stvaranje raznih legendi o odnosima Platona i Aristotela. Evidentno je da su neslaganja u stavovima postojala, pošto Aristotel vrlo rano pokazuje interesovanje za prirodne činjenice i zakone za razliku od Platonovih idealističkih stavova. Bilo kako bilo, nema nikakvih dokaza da su za vreme Aristotelovog boravka na Akademiji odnosi između dvojice filozofa bili zategnuti ili prekinuti. Zapravo, Aristotelovo ponašanje posle Platonove smrti, njegova stalna saradnja sa Ksenokratom i ostalim platonistima, te reference na Platonovo učenje u njegovim delima dokazuju da je, iako je i bilo sukoba mišljenja između Aristotela i Platona, među njima postojalo duboko razumevanje i tolerancija. Takođe, priče kažu da je Aristotel najviše neslaganja imao sa epikurejcima, koji su bili poznati i kao „klevetnici“. Iako se ovakve legende često nalaze kod ranih hrišćanskih pisaca kao što su Justin Isposnik i Grigorije Nazijazin, razlog leži najviše u čvrstom sistemu vrednosti koji su Aristotelu usadili rani hrišćanski jeretici, a ponajmanje u nekom dobro utemeljenom istorijskom verovanju. Posle Platonove smrti (346. p. n. e.), Aristotel sa Ksenokratom odlazi na dvor Hermijasa, vladara Atarnije u Maloj Aziji i ženi se sa Pitijom, vladarevom nećakinjom i pokćerkom. Godine 344. p. n. e., Hermijas gine u pobuni i Aristotel sa porodicom odlazi u Mitilenu. Posle godinu-dve, na poziv kralja Filipa II Makedonskog odlazi u rodnu Stagiru da bi postao tutor Aleksandra Velikog, koji je tad imao 13 godina. Plutarh piše da Aristotel Aleksandra nije poučavao samo etici i politici već ga je upućivao i u daleko dublje tajne filozofije. Mnoštvo je dokaza da je Aleksandar mnogo naučio od Aristotela, a i da je Aristotel imao koristi poučavajući mladog princa (iako se Bertrand Rasel ne slaže s ovim navodima). Zahvaljujući ovom uticaju, Aristotel je od Aleksandra dobijao značajna novčana sredstva za nabavku knjiga, a po svemu sudeći, obnovljena moć Aleksandrove vojske posledica je, barem delimično, i Aleksandrovog odnosa sa Aristotelom. Po navodima Plutarha i Diogena, Filip je 340. p. n. e. godine do temelja spalio Stagiru, Aristotelov rodni grad, ali je Aristotel uspeo nagovoriti Aleksandra da ga obnovi. Oko 335. p. n. e., Aleksandar odlazi u pohod na Aziju a Aristotel, koji je od Aleksandrovog dolaska na makedonski tron imao ulogu neslužbenog savetnika, odlazi ponovo u Atinu i otvara sopstvenu filozofsku školu. Moguće je da je Aristotel, po kazivanju Aula Gelijusa, vodio školu retorike za vreme svog prethodnog boravka u Atini; ali, sada, sledeći Platonov primer, on počinje davati redovne časove iz filozofije u gimnazijumu sagrađenom u čast Apolona Likijskog, po kojem je škola dobila ime Licej.[9] (Škola je takođe bila poznata i kao peripatetička škola pošto je Aristotel voleo da raspravlja o filozofskim pitanjima sa svojim učenicima šetajući gore-dole, peripateo (lagana šetnja), peripatoi (oko gimnazijuma).[10] Za vreme trinaestogodišnjeg perioda (335. p. n. e. — 322. p. n. e.) koji je proveo poučavajući u Liceju, Aristotel je napisao većinu svojih dela. Po uzoru na Platona, piše „Dijaloge“ u kojima popularnim jezikom iznosi osnove svog učenja. Takođe je napisao nekoliko studija (o kojima će biti govora kasnije) o fizici, metafizici itd; u kojima je stil formalniji, a jezik učeniji nego u „Dijalozima“. Ovi tekstovi otkrivaju u kojoj meri su mu bili korisni materijali i pisani izvori koje mu je Aleksandar svojevremeno obezbedio. Oni posebno pokazuju povezanost njegovog učenja sa radovima grčkih filozofa, njegovih prethodnika, te kako je nastavio, lično ili preko drugih filozofa, istraživanja prirodnih pojava. Plinije tvrdi da je Aleksandar stavio pod Aristotelov nadzor sve lovce, ribare i ptičare u svom kraljevstvu te sve nadzornike kraljevskih šuma, jezera, močvara i pašnjaka što je bilo vrlo verovatno uzevši u obzir Aristotelova radove iz zoologije. Aristotel je izuzetno dobro poznavao radove svojih prethodnika tako da Strabon konstatuje da je Aristotel među prvima počeo stvarati veliku biblioteku. U poslednjim godinama Aristotelovog života odnosi između njega i Aleksandra postaju veoma zategnuti zahvaljujući stradanju i kazni Kalistenovoj kojeg je Aristotel svojevremeno preporučio Aleksandru. Bez obzira na sve, u Atini su i dalje smatrali Aristotela Aleksandrovim prijateljem i predstavnikom Makedonije. Naravno, nakon što je u Atinu stigla vest o Aleksandrovoj smrti i nakon što izbili nemiri koji su doveli do Lamijskog rata Aristotel postaje nepopularan kao i svi Makedonci. Atmosferu nepoštovanja i omraženosti, koju su svojevremeno osetili Anaksagora i Sokrat, doživeo je, još bezrazložnije, i sam Aristotel. Napušta Atinu izjavljujući (po svedočenjima mnogih antičkih autoriteta) da neće pružiti Atinjanima šansu da se po treći put ogreše o filozofiju. Nalazi utočište na svom seoskom imanju u Kalkisu u Eubeji gde i umire sledeće godine, 322. p. n. e. od dugogodišnje bolesti. Priče da je njegova smrt posledica trovanja kukutom, kao i legenda da se bacio u more „jer nije mogao objasniti talase“ nemaju istorijske osnove. Vrlo malo se zna o Aristotelovom fizičkom izgledu osim iz njemu nenaklonjenih izvora. Njegove očuvane statue i biste, koje verovatno datiraju iz prvih godina delovanja peripatetičke škole, prikazuju čoveka prosečne visine, oštrih crta lica i pronicljivog pogleda. Na osnovu njegovih tekstova, testamenta (nesumnjivo verodostojnog), odlomaka iz njegovih pisama te svedočenja njegovih objektivnih savremenika zaključujemo da se radilo o visokomoralnom čoveku blage naravi, posvećenog porodici i prijateljima, koji je blago postupao sa svojim robovima, bio milostiv prema svojim neprijateljima i protivnicima i zahvalan svojim dobročiniteljima. Kada je platonizam prestao da dominira svetom hrišćanske misli i kada su se Aristotelovi radovi počeli proučavati objektivno i bez straha, u delima hrišćanskih pisaca 13. veka (isto kao i kod objektivnih pisaca njegovog vremena) Aristotel se opisuje kao čovek blage naravi, dostojanstvene pojave, skroman i bez ijednog moralnog nedostatka, „najveći od onih koji znaju“. Oblici državnog uređenja Aristotel je, za razliku od Platona, više bio orijentisan na istraživanje postojećeg društva. Analizom 158 ustava grčkih polisa, on je podelio državna uređenja na: dobra (monarhija, aristokratija i republika) i loša (tiranija, oligarhija i demokratija).[11] Aristotelovi spisi Glavni članak: Aristotelovi spisi Dela: `Organon` (sakupljeni Aristotelovi logički spisi), Poetika (O pesničkoj umetnosti), `Retorika`, `Nikomahova etika` (Nikomah je bio njegov otac), `Politika`, `Metafizika`, `Fizika`, `O duši`. Njegovi naslednici su učili po njegovim knjigama i po knjigama koje su pisane na osnovu njegovih dela. A, on je prvi koji je objektivno opisao svo dotadašnje znanje. Naglasak na `objektivno`, jer drugi filozofi su pisali dela, pesme, dijaloge. Aristotel je pisao udžbenike, u kojima je prvi put uredno pobrojao sva dotadašnja znanja (i, naravno, dopisao otkrića do kojih je i sam došao).

Prikaži sve...
1,990RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Izdavač: Kultura, Beograd Edicija: Mala filozofska biblioteka Povez: Broširan Broj strana: 49 Aristotel (grč. Αριστοτέλης;[2] 384. p. n. e. — 322. p. n. e.)[3] bio je starogrčki filozof i besednik, Platonov učenik i jedna od najuticajnijih ličnosti u istoriji evropske misli.[4][5][6] Aristotel je bio grčki filozof i naučnik koji je rođen makedonskom gradu Stagira, Halkidiki, na severnoj periferiji klasične Grčke.[7] Njegov otac, Nikomah, je umro kad je Aristotel bio dete, nakon čega je Proksenus od Atarneusa postao njegov staratelj. U svojoj osamnaestoj godini, pošao je na Platonovu akademiju u Atini i ostao je tamo do svoje 37. godine (c. 347 p. n. e.). Njegovi rukopisi pokrivaju mnoge teme – uključujući fiziku, biologiju, zoologiju, metafiziku, logiku, etiku, estetiku, poetiku, pozorište, muziku, retoriku, lingvistiku, politiku i vladu – i čine prvi sveobuhvatni sistem zapadne filozofije. Ubrzo nakon Platonove smrti, Aristotel je napustio Atinu i, na zahtev Filipa Makedonskog, podučavao je Aleksandara Velikog počevši od 343 p. n. e.[5] Prema pisanju Encyclopædia Britannica, „Aristotel je bio prvi istinski naučnik u istoriji ... [i] svaki naučnik mu duguje.“[6] Podučavanje Aleksandra Velikog je pružilo Aristotelu mnoge mogućnosti i obilje materijala. On je osnovao biblioteku u Liceju koja je pomagala u produkciji mnogih od njegovih stotina knjiga. Činjenica da je Aristotel bio Platonov učenik je doprinela njegovom ranom gledištu platonizma, međutim nakon Platonove smrti, Aristotel se uronio u empirijska izučavanja i udaljio se od platonizma u korist empirizma.[8] On je verovao da svi ljudski koncepti i svo njihovo znanje ultimativno bazirani na percepciji. Aristotelovo gledište na prirodne nauke predstavlja podlogu u osnovi mnogih njegovih radova. Aristotelovi pogledi na fizičke nauke temeljno je oblikovalo gledište srednovekovnih učenjaka. Njegov uticaj doseže do renesanse i nije bio sistematski zamenjen do prosvetiteljstva i teorija kao što je klasična mehanika. Neka od Aristotelovih zooloških opažanja, kao što je hectocotyl (reproduktivna) ruka oktopusa, nisu potvrđena, niti osporena do 19. veka. Njegovi radovi sadrže najraniju poznatu studiju logike, koja je inkorporirana u kasnom 19. veku u modernu formalnu logiku. Aristotel je rođen u Stagiri, grčkoj koloniji na makedonskom poluostrvu. Njegov otac, Nikomah, radio je kao dvorski lekar kod kralja Amintasa III Makedonskog, dede Aleksandra Velikog. Veruje se da su Aristotelovi preci bili na ovoj dužnosti i kod ranijih makedonskih kraljeva. Pretpostavlja sa da je, kada je otišao u Atinu sa 18 godina, Aristotel imao i neka znanja iz medicine koja je dobio od oca. Od 18. do 37. godine pohađa Akademiju kao Platonov učenik. Razlike u filozofskim stavovima bile su osnova za stvaranje raznih legendi o odnosima Platona i Aristotela. Evidentno je da su neslaganja u stavovima postojala, pošto Aristotel vrlo rano pokazuje interesovanje za prirodne činjenice i zakone za razliku od Platonovih idealističkih stavova. Bilo kako bilo, nema nikakvih dokaza da su za vreme Aristotelovog boravka na Akademiji odnosi između dvojice filozofa bili zategnuti ili prekinuti. Zapravo, Aristotelovo ponašanje posle Platonove smrti, njegova stalna saradnja sa Ksenokratom i ostalim platonistima, te reference na Platonovo učenje u njegovim delima dokazuju da je, iako je i bilo sukoba mišljenja između Aristotela i Platona, među njima postojalo duboko razumevanje i tolerancija. Takođe, priče kažu da je Aristotel najviše neslaganja imao sa epikurejcima, koji su bili poznati i kao „klevetnici“. Iako se ovakve legende često nalaze kod ranih hrišćanskih pisaca kao što su Justin Isposnik i Grigorije Nazijazin, razlog leži najviše u čvrstom sistemu vrednosti koji su Aristotelu usadili rani hrišćanski jeretici, a ponajmanje u nekom dobro utemeljenom istorijskom verovanju. Posle Platonove smrti (346. p. n. e.), Aristotel sa Ksenokratom odlazi na dvor Hermijasa, vladara Atarnije u Maloj Aziji i ženi se sa Pitijom, vladarevom nećakinjom i pokćerkom. Godine 344. p. n. e., Hermijas gine u pobuni i Aristotel sa porodicom odlazi u Mitilenu. Posle godinu-dve, na poziv kralja Filipa II Makedonskog odlazi u rodnu Stagiru da bi postao tutor Aleksandra Velikog, koji je tad imao 13 godina. Plutarh piše da Aristotel Aleksandra nije poučavao samo etici i politici već ga je upućivao i u daleko dublje tajne filozofije. Mnoštvo je dokaza da je Aleksandar mnogo naučio od Aristotela, a i da je Aristotel imao koristi poučavajući mladog princa (iako se Bertrand Rasel ne slaže s ovim navodima). Zahvaljujući ovom uticaju, Aristotel je od Aleksandra dobijao značajna novčana sredstva za nabavku knjiga, a po svemu sudeći, obnovljena moć Aleksandrove vojske posledica je, barem delimično, i Aleksandrovog odnosa sa Aristotelom. Po navodima Plutarha i Diogena, Filip je 340. p. n. e. godine do temelja spalio Stagiru, Aristotelov rodni grad, ali je Aristotel uspeo nagovoriti Aleksandra da ga obnovi. Oko 335. p. n. e., Aleksandar odlazi u pohod na Aziju a Aristotel, koji je od Aleksandrovog dolaska na makedonski tron imao ulogu neslužbenog savetnika, odlazi ponovo u Atinu i otvara sopstvenu filozofsku školu. Moguće je da je Aristotel, po kazivanju Aula Gelijusa, vodio školu retorike za vreme svog prethodnog boravka u Atini; ali, sada, sledeći Platonov primer, on počinje davati redovne časove iz filozofije u gimnazijumu sagrađenom u čast Apolona Likijskog, po kojem je škola dobila ime Licej.[9] (Škola je takođe bila poznata i kao peripatetička škola pošto je Aristotel voleo da raspravlja o filozofskim pitanjima sa svojim učenicima šetajući gore-dole, peripateo (lagana šetnja), peripatoi (oko gimnazijuma).[10] Za vreme trinaestogodišnjeg perioda (335. p. n. e. — 322. p. n. e.) koji je proveo poučavajući u Liceju, Aristotel je napisao većinu svojih dela. Po uzoru na Platona, piše „Dijaloge“ u kojima popularnim jezikom iznosi osnove svog učenja. Takođe je napisao nekoliko studija (o kojima će biti govora kasnije) o fizici, metafizici itd; u kojima je stil formalniji, a jezik učeniji nego u „Dijalozima“. Ovi tekstovi otkrivaju u kojoj meri su mu bili korisni materijali i pisani izvori koje mu je Aleksandar svojevremeno obezbedio. Oni posebno pokazuju povezanost njegovog učenja sa radovima grčkih filozofa, njegovih prethodnika, te kako je nastavio, lično ili preko drugih filozofa, istraživanja prirodnih pojava. Plinije tvrdi da je Aleksandar stavio pod Aristotelov nadzor sve lovce, ribare i ptičare u svom kraljevstvu te sve nadzornike kraljevskih šuma, jezera, močvara i pašnjaka što je bilo vrlo verovatno uzevši u obzir Aristotelova radove iz zoologije. Aristotel je izuzetno dobro poznavao radove svojih prethodnika tako da Strabon konstatuje da je Aristotel među prvima počeo stvarati veliku biblioteku. U poslednjim godinama Aristotelovog života odnosi između njega i Aleksandra postaju veoma zategnuti zahvaljujući stradanju i kazni Kalistenovoj kojeg je Aristotel svojevremeno preporučio Aleksandru. Bez obzira na sve, u Atini su i dalje smatrali Aristotela Aleksandrovim prijateljem i predstavnikom Makedonije. Naravno, nakon što je u Atinu stigla vest o Aleksandrovoj smrti i nakon što izbili nemiri koji su doveli do Lamijskog rata Aristotel postaje nepopularan kao i svi Makedonci. Atmosferu nepoštovanja i omraženosti, koju su svojevremeno osetili Anaksagora i Sokrat, doživeo je, još bezrazložnije, i sam Aristotel. Napušta Atinu izjavljujući (po svedočenjima mnogih antičkih autoriteta) da neće pružiti Atinjanima šansu da se po treći put ogreše o filozofiju. Nalazi utočište na svom seoskom imanju u Kalkisu u Eubeji gde i umire sledeće godine, 322. p. n. e. od dugogodišnje bolesti. Priče da je njegova smrt posledica trovanja kukutom, kao i legenda da se bacio u more „jer nije mogao objasniti talase“ nemaju istorijske osnove. Vrlo malo se zna o Aristotelovom fizičkom izgledu osim iz njemu nenaklonjenih izvora. Njegove očuvane statue i biste, koje verovatno datiraju iz prvih godina delovanja peripatetičke škole, prikazuju čoveka prosečne visine, oštrih crta lica i pronicljivog pogleda. Na osnovu njegovih tekstova, testamenta (nesumnjivo verodostojnog), odlomaka iz njegovih pisama te svedočenja njegovih objektivnih savremenika zaključujemo da se radilo o visokomoralnom čoveku blage naravi, posvećenog porodici i prijateljima, koji je blago postupao sa svojim robovima, bio milostiv prema svojim neprijateljima i protivnicima i zahvalan svojim dobročiniteljima. Kada je platonizam prestao da dominira svetom hrišćanske misli i kada su se Aristotelovi radovi počeli proučavati objektivno i bez straha, u delima hrišćanskih pisaca 13. veka (isto kao i kod objektivnih pisaca njegovog vremena) Aristotel se opisuje kao čovek blage naravi, dostojanstvene pojave, skroman i bez ijednog moralnog nedostatka, „najveći od onih koji znaju“. Oblici državnog uređenja Aristotel je, za razliku od Platona, više bio orijentisan na istraživanje postojećeg društva. Analizom 158 ustava grčkih polisa, on je podelio državna uređenja na: dobra (monarhija, aristokratija i republika) i loša (tiranija, oligarhija i demokratija).[11] Aristotelovi spisi Glavni članak: Aristotelovi spisi Dela: `Organon` (sakupljeni Aristotelovi logički spisi), Poetika (O pesničkoj umetnosti), `Retorika`, `Nikomahova etika` (Nikomah je bio njegov otac), `Politika`, `Metafizika`, `Fizika`, `O duši`. Njegovi naslednici su učili po njegovim knjigama i po knjigama koje su pisane na osnovu njegovih dela. A, on je prvi koji je objektivno opisao svo dotadašnje znanje. Naglasak na `objektivno`, jer drugi filozofi su pisali dela, pesme, dijaloge. Aristotel je pisao udžbenike, u kojima je prvi put uredno pobrojao sva dotadašnja znanja (i, naravno, dopisao otkrića do kojih je i sam došao).

Prikaži sve...
990RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Tadeusz Marian Kotarbiński (poljski: [kotar`biński]; 31. ožujka 1886. - 3. listopada 1981.) bio je poljski filozof, logičar i etičar. Učenik Kazimierza Twardowskog, bio je jedna od najreprezentativnijih ličnosti Lwówsko-varšavske škole i član Poljske akademije za učenje (PAU) kao i Poljske akademije znanosti (PAN). Razvio je filozofsku teoriju nazvanu reizam (poljski: reizm) i etički sustav nazvan nezavisna etika. Kotarbiński je značajno pridonio i razvoju prakseologije. Henryk Greniewski i Kazimierz Pasenkiewicz bili su doktorski studenti kod Kotarbińskog. Život Tadeusz Kotarbiński rođen je 31. ožujka 1886. u Varšavi, tadašnjoj Poljskoj, Ruskom Carstvu, u obitelji umjetnika. Njegov otac, Miłosz Kotarbiński, bio je slikar, njegova majka, Ewa Koskowska, bila je pijanistica i skladateljica. Njegovi ujaci bili su Józef Kotarbiński, važna osoba u poljskim kazališnim krugovima, i Wilhelm Kotarbiński, talentirani slikar. Izbačen iz srednje škole 1905. zbog sudjelovanja u štrajku, Kotarbiński je uspio maturirati dvije godine kasnije. Prvo je studirao kao neupisani student na Jagielonskom sveučilištu u Krakovu, slušajući uglavnom predavanja iz matematike i fizike; zatim arhitekturu u Lavovu i Darmstadtu, da bi se konačno zadovoljio studijem filozofije i klasične filologije na Sveučilištu u Lavovu. Profesori su mu bili neki od najcjenjenijih filozofa, logičara i matematičara svoga vremena: Kazimierz Twardowski, Jan Łukasiewicz, Władysław Witwicki i filolog Stanisław Witkowski. Doktorirao je s tezom Utilitarizam u etici Milla i Spencera 1912. godine. Nakon diplome predavao je klasične jezike u varšavskoj Gimnaziji Mikołaj Rey (srednja škola). Godine 1918. započeo je karijeru predavača filozofije na Sveučilištu u Varšavi; od 1929. do 1930. bio je dekan humanističkih znanosti. U međuratnom razdoblju Kotarbiński se bavio društvenim poslovima. Aktivno se borio protiv antisemitizma, ultranacionalizma i klerikalizma. Pisao je uglavnom za mjesečnik `Racjonalista`, organ Poljske udruge slobodnih mislilaca. Tijekom progona studenata židovskog podrijetla na poljskim sveučilištima, kada su desničarske organizacije pokušale odrediti zasebne sektore u predavaonicama za nepoljske studente, zajednički se pridružio njihovom prosvjedu, tijekom kojeg je svoja predavanja držao stojeći. Bio je protivnik geto klupa uvedenih na Sveučilištu u Varšavi 1937. U svom djelovanju, blizak ljevičarskim i socijalističkim skupinama, bio je član Sindikata poljskih učitelja, koji je u godinama 1937.–1939. višeškolskog odsjeka. Nakon Drugog svjetskog rata, zajedno s drugim uglednim ljudima od učenja, pomogao je u stvaranju državnog sveučilišta u Łódźu. Godine 1945. Kotarbiński je postao prvi rektor Sveučilišta u Łódźu, držeći tu dužnost do 1949. dok je istovremeno radio na Sveučilištu u Varšavi. Njegov model rada postao je mjerilom za buduće generacije znanstvenika na Sveučilištu u Łódźu. Filozofija Reizam Reizam je pansomatizam (od grčkog: πᾶν `sve` + σῶμα `tijelo`) ontologija kao i semantička teorija koju je razvio Kotarbiński i koja je najopsežnije izložena u njegovom glavnom djelu: Elementi teorije znanja, formalne logike i metodologije znanosti , prvi put objavljen 1929. Kotarbiński je tvorac pojma reizam, riječi izvedene iz latinskog res `stvar`. Ontološki reizam Pristup ontološkog reizma Kotarbińskog pretpostavlja da su jedine stvari koje postoje, a time i jedina ontološka kategorija koja se može koristiti, pojedinačni, konkretni objekti (ili tijela) u suprotnosti s doktrinama koje dopuštaju postojanje takvih kategorija kao što su univerzalije, stanja stvari, svojstva , relacije, skupovi, klase, mentalni konstrukti itd. Semantički reizam U svojoj semantičkoj formulaciji Kotarbiński je pretpostavio da smislene rečenice moraju sadržavati takozvana prava imena (koja se odnose na konkretne objekte) za razliku od naziva apstraktnih objekata ili nepravih imena (onomatoidi). Također je razlikovao onomatoide od praznih naziva, koje je smatrao reističkim. Rečenice s samo onomatoidima bile su po njemu besmislene, dok su one s praznim imenima imale smisla. Reizam su anticipirali filozofi koji su prethodili Kotarbińskom (Leibniz, Brentano i njegovi učenici te raniji nominalisti i materijalisti), ali Kotarbiński ga je razvio do cjelovitog, sustavnog izlaganja i dao mu ime. Godine 1958. u Filozofskim studijama 4(7) Kotarbiński je objavio Razvojne faze konkretizma, esej u kojem je raspravljao o konstrukciji i evoluciji svoje teorije počevši od ranog konkretizma ili nominalizma, prolazeći kroz sedam faza ponovne razrade i konačno kulminirajući u pansomatizmu . Kotarbiński je u svojim djelima donekle koristio pojmove: reizam, pansomatizam i konkretizam kao ekvivalente. Prakseologija Kotarbiński je bio najistaknutiji predstavnik i promicatelj znanosti o učinkovitom djelovanju, zvane praksiologija – kl. se odnosi na praksiologiju [potrebno pojašnjenje]. Prakseologija se razlikuje od praksiologije [potrebno pojašnjenje] uglavnom po svojim više filozofskim (za razliku od ekonomskih) ciljevima.[2] Znanstvenici smatraju radove Kotarbińskog u praksiologiji najsustavnijim izlaganjem temelja ove mlade znanosti, posebice u njegovom Traktatu o dobrej robocie (Rasprava o dobrom djelu) i, u određenoj mjeri, njegovoj ranijoj publikaciji pod nazivom Szkice praktyczne (Eseji o praksi) [3] Kotarbiński je postavio da je praksaologija znanost koja je šira od znanosti o radu jer sadrži filozofsku razradu koncepta djelovanja, posebno u kontekstu procesa ljudskog rada, uključujući preporuke i opća rješenja za ljudske aktivnosti u različitim područjima.[4] ] Njegovo se stajalište smatra djelomično deskriptivnim u smislu da mu je cilj razumjeti relevantna obilježja radnji, ali da klasifikacije koje proizvodi imaju normativne ciljeve.[5] Doprinos Kotarbińskog razumijevanju prirode djelovanja smatra se temeljnim za teoriju djelovanja (filozofiju) [6] Tri godine nakon objavljivanja Rasprave o dobrom radu, Kotarbiński je uvjerio Poljsku akademiju znanosti da osnuje Laboratorij za opća pitanja organizacije rada (Pracownia Ogólnych Problemów Organizacji Pracy), koji je kasnije nadograđen u Odjel za praksisologiju. Počevši od 1962., izdavao je časopis Materiały Prakseologiczne (Prakseološki radovi), kasnije preimenovan u Prakseologia (Prakseologija).

Prikaži sve...
990RSD
forward
forward
Detaljnije

Opis O autoru Dodatne informacije Držim da postoji rastuća tendencija „filozofije“ da se udalji od životnih pitanja, tendencija koja čini ne samo da njeni problemi budu isključivo tehničke prirode (što je u određenoj meri nužnost) već da sámo umnožavanje rasprava o njima I jačanje njihove kontroverznosti zapravo međusobno udaljavaju filozofe – što je pouzdan znak da se negde na putu izgubio kompas i bacila mapa. Džon Djui Zdrav razum je totalizujući kao i bilo koji drugi okvir i oblik mišljenja: nijedna religija nije više dogmatična, nijedna nauka nije više ambiciozna, nijedna filozofija nije opštija. Njegovi tonaliteti su drugačiji, kao i argumenti na koje se poziva, ali poput umetnosti ili ideologije, zdrav razum se prikazuje kao oblik mišljenja koji je u stanju da prevaziđe iluziju i dođe do istine, do, kako se kaže, samog stanja stvari. Kliford Gerc Džon Djui (engl. John Dewey; Berlington, 20. oktobar 1859 — Njujork, 1. jun 1952) je bio američki filozof, socijalni kritičar i teoretičar obrazovanja.U vremenu u kojem je filozofija bila u procesu profesionalizacije, Djui se održao kao filozof zainteresovan za probleme svakodnevnice, sa međunarodnim uticajem u oblastima politike i obrazovanja. Bio je i profesor univerziteta Mičigen i Minesota. Od 1894. profesor je u Čikagu gde 1896. osniva univezitetsku vežbaonicu, a od 1904. godine profesor je na Kolumbija univerzitetu u Njujorku i u Visokoj učiteljskoj školi. Kao vladin savetnik za pedagogiju boravio je dve godine u Kini organizujući prosvetni sistem, a u istom svojstvu boravio je u Turskoj i Meksiku. Do kraja života delovao je u američkom kulturnom i prosvetnom životu kao filozof, pedagog i politički angažovan reformator. U filozofiji je zastupao pragmatizam po kojem je kriterijum istine korist, a Djui je formirao svoju verziju pragmatizam-instrumentalizam, teoriju koja smatra kako svaki pojam, ideju itd. treba shvatiti kao instrument akcije. Raspravljajući o pitanjima obrazovanja i prenošenja iskustva starijih na mlađe generacije, ljudska bi vrsta vrlo brzo podlegla prirodnoj stihiji. Međutim, zahvaljujući nagomilanom iskustvu, što se prenosi u procesu obrazovanja na mlade generacije, ona se održava i menja svoju okolinu. Iz filozofskih i socijalno-političkih stavova Džona Djuia proizilazi da vaspitanje i nije ništa drugo nego neprekidno proširivanje i produbljivanje dečjeg iskustva, a razvitak deteta je prilagođavanje postojećem društvu. U vaspitnom procesu dete je u središtu, pa se njegove snage moraju ispoljiti, interesi se moraju ostvariti, a sposobnosti vežbati. Dete poseduje četiri instinkta: socijalni konstruktivni istraživački i umetnički. Vaspitanje ne sme formirati dete prema određenim vaspitnim ciljevima, već ima zadatak da uklanja smetnje koje bi kočile slobodan razvoj, slobodan rast deteta. Dete treba da se slobodno razvija, a vaspitanje se ravna prema nepromenljivim zakonima razvoja psihičkih i telesnih funkcija deteta. Prema tome, Djui je jedan od teoretičara „slobodnog vaspitanja“, teorije koja ima svoj koren Rusoovim stavovima, samo što su ovi imali u svoje vreme drugu društvenu ulogu. Djui je protivnik knjiškog i verbalnog znanja i učenja. Smatra kako je polazni izvor znanja rad, jer radeći se stiču najsigurnija i najefikasnija znanja, veštine i navike. Dakle, rad nije samo mogućnost za upoznavanje teorije. Prema Djuovom mišljenju fiziku će učenici najbolje savladati u radionici i pogonu, hemiju u kuhinji, geometriju u stolarskoj radionici, zoologiju uzgajanjem domaćih životinja, botaniku radovima u vrtu, polju, voćnjaku i vinogradu, a istoriju i geografiju putovanjima. Djuji je isticao da filozofija ima tri oblasti istraživanja, koje mogu biti predstavljene u formi tri koncentrična kruga. Prva, najuža, jeste oblast istraživanja zakona refleksivnog mišljenja, to jest naučnog istraživanja – to je oblast logike; druga, šira, jeste oblast istraživanja zakonitosti i uzajamnog uticaja ostalih oblika ljudskog iskustva – umetničkog, moralnog, religioznog i tako dalje, kao i njihovog odnosa prema logičkom mišljenju; i treća, najšira, jeste oblast socijalnih pitanja, oblast primene filozofije na organizacione i institucionalne probleme društvenog života, socijalnog i kulturnog ponašanja, odnosa pojedinca i društvene celine. Kliford Džejms Gerc (23. avgust 1926. – 30. oktobar 2006.) je bio američki interpretativni antropolog poznat po snažnom uticaju na interpretativnu i simboličku antropologiju. Osnovao je departman društenih nauka na prestižnom Institutu za napredne studije Univerziteta u Prinstonu, na kojem je predavao kao profesor sa velikim intelektualnim prestižom. Gerc je bio značajna figura savremene antropologije. Kao i drugi veliki antropolozi, svoja terenska istraživanja je obavljao u Indoneziji i Maroku. Poznat je po konceptu „gustog opisa”, semiotičkom tumačenju kulture i tzv. „književnom zaokretu” u pravcu simboličke i interpretativne antropologije. Napisao je i priredio 17 knjiga, preko stotinu naučnih i stručnih članaka kao i nekoliko zbirki eseja, koje je objavljivao u New York Review of Books, American Scholar i u drugim uglednim intelektualnim časopisima. Gerc smatra da bi protumačili mrežu simbola kulture, naučnici moraju prvo da izoluju njene elemente, zatim da ukažu na unutrašnje odnose među tim elementima i označe ceo sistem na neki opšti način prema osnovnim simbolima oko kojih su organizovani, čije su osnovne strukture površinski izraz ili ideološki princip na kojima se zasniva.[5] On smatra da sistem značenja proizvodi kulturu, jer je to kolektivna svojina određenog naroda. Gerc se vodio idejom da je svaka kultura svet za sebe. Njegovo shvatanje sveta je idealističko i on društvo vidi kao simboličku celinu. Promovisao je ideju kulture kao nezavisnog, samodovoljnog ili samodrživog sistema koji se može proučavati iako se ne uzimaju u obzir društveni (societetski uslovi).[6] Na taj način kultura postaje pojam koji je ključan za razumevanje čovekovog mesta u svetu, a antropologija predstavlja sredstvo za bliže određenje njenog mesta i uloge.[7] Insistirajući na hermeneutičkim metodama u atropološkim proučavanjima, Gerc je postao poznat po tome što je uveo tzv. „književni zaokret“ u antropologiji. Kliford Gerc je bio jedan od prvih naučnika koji je uvideo da saznanja iz jezika, filozofije i književne analize mogu imati veliku objašnjavajuću vrednost u društvenim naukama. Gerc je imao za cilj da doprinese društvenim naukama tako što će razraditi pojam „gustog opisa“. Gerc je primenio gust opis na antropološke studije (konkretno na njegovu „interpretativnu antropologiju“), pozivajući antropologe da razmotre ograničenja koja im nameću njihove sopstvene kulturološke kosmologije dok pokušavaju da objasne kulturu drugih ljudi.[8] On je razvio teoriju koja ja je imala veliki uticaj na društvene nauke. Za Gerca je etnografija specifičan način zapisivanja određene kulture koja se sprovodi kroz posebnu vrstu gustog pisanja. Težina 0,15 кг Godina izdanja 2021 Pismo latinica Povez broš Broj stranica 104 str. ISBN 978-86-80484-64-8 Dimenzije 115 x 175

Prikaži sve...
536RSD
forward
forward
Detaljnije

Autor - osoba Aristoteles, 384pne-322pne = Aristotel, 384pne-322pne Naslov O pjesničkom umijeću / Aristotel ; prijevod i objašnjenja Zdeslav Dukat Vrsta građe knjiga Ciljna grupa odrasli, ozbiljna (nije lepa knjiž.) Jezik hrvatski Godina 1983 Izdavanje i proizvodnja Zagreb : `August Cesarec`, 1983 (Zagreb : `Ognjen Prica`) Fizički opis 490 str. ; 20 cm Drugi autori - osoba Dukat, Zdeslav, 1940-2012 = Dukat, Zdeslav, 1940-2012 Zbirka ǂBiblioteka ǂKritika i esejistika (Karton) Napomene Prevod dela: Peri poietikes Bibliografija: str. 7-8. Predmetne odrednice Aristotel, 384-322pne -- `Poetika` Poetika ili O pjesničkom umijeću jedno je od najpoznatijih Aristotelovih djela koje u 26 glava govori o pjesništvu, analizira ga, svrstava i opisuje. Poetika se može zamisliti kao učenje koje se razvija od razmatranja opće prirode književnosti, preko analize pojedinačnog književnog djela do razmatranja književnih vrsta kao posebnih oblika unutar kojih se ostvaruje svako pojedinačno književno djelo. Od svog osnutka bijaše zamišljena kao „o pjesničkom umijeću kao takvom i o pojedinim njegovim oblicima“, što je rečeno u uvodu Aristotelove Poetike. Književnost se razvija u nizu oblikovanja posebnih oblika književnih vrsta, stoga je proučavanje načela oblikovanja od vrlo velike važnosti i za razumijevanje književnosti u cjelini i za razumijevanje načina na koji se unutar svake vrste oblikuju pojedinačna književna djela. Taj se dio teorije književnosti naziva poetika. Proučavanje književnih djela pretpostavlja određeno načelno razmatranje prirode književnosti, a iz tog shvaćanja proizlazi i shvaćanje osobina pojedinih književnih djela, odnosno proučavanje načina kako se književna djela mogu analizirati. Aristotel dijeli poeziju na tri vrste: tragediju, komediju i epsko pjesništvo. Središte u Poetici ima tragedija, a drugo Aristotelovo djelo u čijem je središtu komedija izgubljeno je. Postoje nagađanja da je tzv. Tractatus coislinianus predložak za Aristotelove lekcije o tom predmetu ili bilješke filozofa aristotelovske tradicije. Sačuvani tekst Poetike vjerojatno nije u cjelini, a postojeći su najvjerojatnije prepisali njegovi učenici. Središte Poetike jest njegova analiza tragedije koju definira kao oponašanje ozbiljne i cjelovite radnje primjerene veličine ukrašenim govorom i to svakom od vrsta ukrašavanja posebno u odgovarajućim njezinim dijelovima. Poetika zajedno s Retorikom čini Aristotelov rad o estetici. Aristotel (grč. Αριστοτέλης; 384. p. n. e. – 322. p. n. e.) bio je starogrčki filozof i besednik, Platonov učenik i jedna od najuticajnijih ličnosti u istoriji evropske misli. Aristotel je bio grčki filozof i naučnik koji je rođen makedonskom gradu Stagira, Halkidiki, na severnoj periferiji klasične Grčke. Njegov otac, Nikomah, je umro kad je Aristotel bio dete, nakon čega je Proksenus od Atarneusa postao njegov staratelj. U svojoj osamnaestoj godini, pošao je na Platonovu akademiju u Atini i ostao je tamo do svoje 37. godine (c. 347 p. n. e.). Njegovi rukopisi pokrivaju mnoge teme – uključujući fiziku, biologiju, zoologiju, metafiziku, logiku, etiku, estetiku, poetiku, pozorište, muziku, retoriku, lingvistiku, politiku i vladu – i čine prvi sveobuhvatni sistem zapadne filozofije. Ubrzo nakon Platonove smrti, Aristotel je napustio Atinu i, na zahtev Filipa Makedonskog, podučavao je Aleksandara Velikog počevši od 343 p. n. e. Prema pisanju Encyclopædia Britannica, „Aristotel je bio prvi istinski naučnik u istoriji ... [i] svaki naučnik mu duguje.“ Podučavanje Aleksandra Velikog je pružilo Aristotelu mnoge mogućnosti i obilje materijala. On je osnovao biblioteku u Liceju koja je pomagala u produkciji mnogih od njegovih stotina knjiga. Činjenica da je Aristotel bio Platonov učenik je doprinela njegovom ranom gledištu platonizma, međutim nakon Platonove smrti, Aristotel se uronio u empirijska izučavanja i udaljio se od platonizma u korist empirizma.[8] On je verovao da svi ljudski koncepti i svo njihovo znanje ultimativno bazirani na percepciji. Aristotelovo gledište na prirodne nauke predstavlja podlogu u osnovi mnogih njegovih radova. Aristotelovi pogledi na fizičke nauke temeljno je oblikovalo gledište srednovekovnih učenjaka. Njegov uticaj doseže do renesanse i nije bio sistematski zamenjen do prosvetiteljstva i teorija kao što je klasična mehanika. Neka od Aristotelovih zooloških opažanja, kao što je hectocotyl (reproduktivna) ruka oktopusa, nisu potvrđena, niti osporena do 19. veka. Njegovi radovi sadrže najraniju poznatu studiju logike, koja je inkorporirana u kasnom 19. veku u modernu formalnu logiku. Aristotel je rođen u Stagiri, grčkoj koloniji na makedonskom poluostrvu. Njegov otac, Nikomah, radio je kao dvorski lekar kod kralja Amintasa III Makedonskog, dede Aleksandra Velikog. Veruje se da su Aristotelovi preci bili na ovoj dužnosti i kod ranijih makedonskih kraljeva. Pretpostavlja sa da je, kada je otišao u Atinu sa 18 godina, Aristotel imao i neka znanja iz medicine koja je dobio od oca. Od 18. do 37. godine pohađa Akademiju kao Platonov učenik. Razlike u filozofskim stavovima bile su osnova za stvaranje raznih legendi o odnosima Platona i Aristotela. Evidentno je da su neslaganja u stavovima postojala, pošto Aristotel vrlo rano pokazuje interesovanje za prirodne činjenice i zakone za razliku od Platonovih idealističkih stavova. Bilo kako bilo, nema nikakvih dokaza da su za vreme Aristotelovog boravka na Akademiji odnosi između dvojice filozofa bili zategnuti ili prekinuti. Zapravo, Aristotelovo ponašanje posle Platonove smrti, njegova stalna saradnja sa Ksenokratom i ostalim platonistima, te reference na Platonovo učenje u njegovim delima dokazuju da je, iako je i bilo sukoba mišljenja između Aristotela i Platona, među njima postojalo duboko razumevanje i tolerancija. Takođe, priče kažu da je Aristotel najviše neslaganja imao sa epikurejcima, koji su bili poznati i kao „klevetnici“. Iako se ovakve legende često nalaze kod ranih hrišćanskih pisaca kao što su Justin Isposnik i Grigorije Nazijazin, razlog leži najviše u čvrstom sistemu vrednosti koji su Aristotelu usadili rani hrišćanski jeretici, a ponajmanje u nekom dobro utemeljenom istorijskom verovanju. Posle Platonove smrti (346. p. n. e.), Aristotel sa Ksenokratom odlazi na dvor Hermijasa, vladara Atarnije u Maloj Aziji i ženi se sa Pitijom, vladarevom nećakinjom i pokćerkom. Godine 344. p. n. e., Hermijas gine u pobuni i Aristotel sa porodicom odlazi u Mitilenu. Posle godinu-dve, na poziv kralja Filipa II Makedonskog odlazi u rodnu Stagiru da bi postao tutor Aleksandra Velikog, koji je tad imao 13 godina. Plutarh piše da Aristotel Aleksandra nije poučavao samo etici i politici već ga je upućivao i u daleko dublje tajne filozofije. Mnoštvo je dokaza da je Aleksandar mnogo naučio od Aristotela, a i da je Aristotel imao koristi poučavajući mladog princa (iako se Bertrand Rasel ne slaže s ovim navodima). Zahvaljujući ovom uticaju, Aristotel je od Aleksandra dobijao značajna novčana sredstva za nabavku knjiga, a po svemu sudeći, obnovljena moć Aleksandrove vojske posledica je, barem delimično, i Aleksandrovog odnosa sa Aristotelom. Po navodima Plutarha i Diogena, Filip je 340. p. n. e. godine do temelja spalio Stagiru, Aristotelov rodni grad, ali je Aristotel uspeo nagovoriti Aleksandra da ga obnovi. Oko 335. p. n. e., Aleksandar odlazi u pohod na Aziju a Aristotel, koji je od Aleksandrovog dolaska na makedonski tron imao ulogu neslužbenog savetnika, odlazi ponovo u Atinu i otvara sopstvenu filozofsku školu. Moguće je da je Aristotel, po kazivanju Aula Gelijusa, vodio školu retorike za vreme svog prethodnog boravka u Atini; ali, sada, sledeći Platonov primer, on počinje davati redovne časove iz filozofije u gimnazijumu sagrađenom u čast Apolona Likijskog, po kojem je škola dobila ime Licej. (Škola je takođe bila poznata i kao peripatetička škola pošto je Aristotel voleo da raspravlja o filozofskim pitanjima sa svojim učenicima šetajući gore-dole, peripateo (lagana šetnja), peripatoi (oko gimnazijuma). Za vreme trinaestogodišnjeg perioda (335. p. n. e. – 322. p. n. e.) koji je proveo poučavajući u Liceju, Aristotel je napisao većinu svojih dela. Po uzoru na Platona, piše „Dijaloge“ u kojima popularnim jezikom iznosi osnove svog učenja. Takođe je napisao nekoliko studija (o kojima će biti govora kasnije) o fizici, metafizici itd.; u kojima je stil formalniji, a jezik učeniji nego u „Dijalozima“. Ovi tekstovi otkrivaju u kojoj meri su mu bili korisni materijali i pisani izvori koje mu je Aleksandar svojevremeno obezbedio. Oni posebno pokazuju povezanost njegovog učenja sa radovima grčkih filozofa, njegovih prethodnika, te kako je nastavio, lično ili preko drugih filozofa, istraživanja prirodnih pojava. Plinije tvrdi da je Aleksandar stavio pod Aristotelov nadzor sve lovce, ribare i ptičare u svom kraljevstvu te sve nadzornike kraljevskih šuma, jezera, močvara i pašnjaka što je bilo vrlo verovatno uzevši u obzir Aristotelova radove iz zoologije. Aristotel je izuzetno dobro poznavao radove svojih prethodnika tako da Strabon konstatuje da je Aristotel među prvima počeo stvarati veliku biblioteku. U poslednjim godinama Aristotelovog života odnosi između njega i Aleksandra postaju veoma zategnuti zahvaljujući stradanju i kazni Kalistenovoj kojeg je Aristotel svojevremeno preporučio Aleksandru. Bez obzira na sve, u Atini su i dalje smatrali Aristotela Aleksandrovim prijateljem i predstavnikom Makedonije. Naravno, nakon što je u Atinu stigla vest o Aleksandrovoj smrti i nakon što izbili nemiri koji su doveli do Lamijskog rata Aristotel postaje nepopularan kao i svi Makedonci. Atmosferu nepoštovanja i omraženosti, koju su svojevremeno osetili Anaksagora i Sokrat, doživeo je, još bezrazložnije, i sam Aristotel. Napušta Atinu izjavljujući (po svedočenjima mnogih antičkih autoriteta) da neće pružiti Atinjanima šansu da se po treći put ogreše o filozofiju. Nalazi utočište na svom seoskom imanju u Kalkisu u Eubeji gde i umire sledeće godine, 322. p. n. e. od dugogodišnje bolesti. Priče da je njegova smrt posledica trovanja kukutom, kao i legenda da se bacio u more „jer nije mogao objasniti talase“ nemaju istorijske osnove. Vrlo malo se zna o Aristotelovom fizičkom izgledu osim iz njemu nenaklonjenih izvora. Njegove očuvane statue i biste, koje verovatno datiraju iz prvih godina delovanja peripatetičke škole, prikazuju čoveka prosečne visine, oštrih crta lica i pronicljivog pogleda. Na osnovu njegovih tekstova, testamenta (nesumnjivo verodostojnog), odlomaka iz njegovih pisama te svedočenja njegovih objektivnih savremenika zaključujemo da se radilo o visokomoralnom čoveku blage naravi, posvećenog porodici i prijateljima, koji je blago postupao sa svojim robovima, bio milostiv prema svojim neprijateljima i protivnicima i zahvalan svojim dobročiniteljima. Kada je platonizam prestao da dominira svetom hrišćanske misli i kada su se Aristotelovi radovi počeli proučavati objektivno i bez straha, u delima hrišćanskih pisaca 13. veka (isto kao i kod objektivnih pisaca njegovog vremena) Aristotel se opisuje kao čovek blage naravi, dostojanstvene pojave, skroman i bez ijednog moralnog nedostatka, „najveći od onih koji znaju“. Oblici državnog uređenja Aristotel je, za razliku od Platona, više bio orijentisan na istraživanje postojećeg društva. Analizom 158 ustava grčkih polisa, on je podelio državna uređenja na: dobra (monarhija, aristokratija i republika) i loša (tiranija, oligarhija i demokratija). Aristotelovi spisi Glavni članak: Aristotelovi spisi Dela: Organon (sakupljeni Aristotelovi logički spisi), Poetika (O pesničkoj umetnosti), Retorika, Nikomahova etika (Nikomah je bio njegov otac), Politika, Metafizika, Fizika, O duši. Njegovi naslednici su učili po njegovim knjigama i po knjigama koje su pisane na osnovu njegovih dela. A, on je prvi koji je objektivno opisao svo dotadašnje znanje. Naglasak na objektivno, jer drugi filozofi su pisali dela, pesme, dijaloge. Aristotel je pisao udžbenike, u kojima je prvi put uredno pobrojao sva dotadašnja znanja (i, naravno, dopisao otkrića do kojih je i sam došao). MG122 (N)

Prikaži sve...
1,990RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Na nultoj stranici deciji crtezi, nista strasno! Sve ostalo uredno! Rene Dekart (lat. Renatus des Cartes,[2] franc. René Descartes; La Ej, 31. mart 1596 — Stokholm, 11. februar 1650) bio je francuski filozof,[3][4] matematičar i naučnik čije je delo Geometrija (La geometrie) postavilo osnove današnjoj analitičkoj geometriji. Začetnik je novovekovnog filozofskog pravca racionalizma,[5] a često se kaže da se u njegovom djelu mogu naći i neke od prvih empirističkih teza. U Meditacijama o prvoj filozofiji dosljedno (tzv. metodskom sumnjom) izvodi ono prvo sigurno saznanja i uobličava ga u čuveno Cogito ergo sum stav koji će značiti izvorni preokret u novovekovnoj evropskoj misli, odvajajući je od srednjovekovnog teocentričnog pogleda sholastičke provenijencije.[6] U Dekartovoj filozofiji, rekao bi Hegel, subjekt postaje za sebe, konkretizuje se prevazilazeći antičku objektivnost. Dekart je svoje najpoznatije delo Raspravu o metodi (fran. Discours de la méthode, 1637) objavio na maternjem, francuskom jeziku, a ne na latinskom učene Evrope, jer se ne obraća ljudima knjiške učenosti nego ljudima zdravog razuma. Izvesnost u saznanju savremenog čoveka, prema Dekartu, postiže se metodom univerzalne sumnje, kojom se odbacuje sve što nije jasno i očigledno, a što je očigledno i jasno, to je izvesno i istinito. Dekart je pokazao da u praktičnom životu ne možemo nezainteresovano i unedogled izvoditi naučna istraživanja kao u teoriji jasne i razgovetne spoznaje, niti pak ovu kao u tehnici naknadno primenjivati na etičko-političko delovanje, nego da se moramo odlučiti za delovanje u svakoj datoj situaciji, jer delovanje ne trpi odlaganja.[7] Dekartova najpoznatija i najznamenitija tvrdnja je „Mislim, dakle postojim“.[8] Biografija Kuća gde je rođen Rene Dekart u seocetu Le Haye - danas mesto nosi naziv Dekarta. Rene Dekart sa kraljicom Kristinom od Švedske. Knjiga Načela filozofije (Principia philosophiae, 1644). Rođen je 31. marta 1596. godine u La Eju (La Haue, danas La Haue Descartes) u Francuskoj.[9] Obrazovanje je stekao u Anjonu upisavši tada elitnu jezuitsku školu u La Flešu (La Fleche) sa samo osam godina (1604).[10] gde se upoznao sa matematikom i fizikom, uključujući i Galileov rad.[11] Tu je proveo osam godina učeći logiku, matematiku i tradicionalnu Aristotelovu filozofiju. Njegov biograf Adrijan Bajet (Adrian Baillet) tvrdi da je imao problema sa zdravljem, pa je dobio dozvolu da ostaje u krevetu do jedanaest sati ujutru. Tu naviku je zadržao do kraja života. Jedini predmet kojim je bio zadovoljan bila je matematika. Ovo saznanje ne samo što je uticalo na njegov način razmišljanja, već i na njegov celokupni rad. Po završetku škole preselio se u Pariz i posle nekog vremena upisao je Univerzitet u Puatijeu (Poitiers). Diplomiravši prava 1616, prijavio se za vojnu školu u Bredau (Breda).[12] 1618. godine počeo je da uči matematiku i mehaniku kod holandskog naučnika Isaka Bekmana (Isaac Beeckman), spoznajući jedinstvo prirodnih nauka. Posle dve godine provedene u Holandiji, putovao je po Evropi da bi se 1619. godine priključio Bavarskoj vojsci. U periodu od 1620. do 1628. godine Dekart je putovao po Evropi, boraveći u Češkoj (1620), Mađarskoj (1621), Nemačkoj, Holandiji i Francuskoj (1622—1623). U Parizu je 1623. upoznao Marena Mersena (Marina Mersenne) koji mu je postao doživotni prijatelj i veza s mnogim tadašnjim učenim ljudima. Iz Pariza je otputovao u Italiju, gde je neko vreme boravio u Veneciji, da bi se ponovo 1625. godine vratio u Francusku. Dekart se vremenom umorio od silnih putovanja i odlučio da se skrasi. Dugo je birao zemlju koja bi odgovarala njegovoj prirodi i na kraju se odlučio za Holandiju. Tu je živeo tokom sledećih dvadeset godina. Neposredno posle nastanjenja u Holandiji, Dekart je počeo da radi na svojoj prvoj velikoj tezi u oblasti fizike, pod nazivom Svet (Le Monde, ou Traité de la Lumiere). Pri završetku ovog rada do njega je stigla vest da je Galilej osuđen na kućni zatvor. Dekart je odlučio da ne rizikuje objavljujući svoj rad, tako da je Svet objavljen samo delimično posle njegove smrti. U Holandiji je Dekart imao mnogo prijatelja među naučnicima. I dalje je održavao prijateljstvo sa Bekmanom i Mersenom. Kontaktirao je i sa mnogim drugim naučnicima i misliocima svoga vremena. Godine 1649. švedska kraljica Kristina ubedila je Dekarta da dođe u Stokholm. Dvadesettrogodišnja kraljica je želela da je Dekart podučava filozofiji u pet sati ujutro, zbog njenih državničkih dužnosti samo je tada imala vremena. Želeći da svojim savetima utiče na ćudljivu vladarku tada moćne zemlje kako bi time učinio nešto za mir u svetu, Dekart je podnosio surove uslove u zemlji stena i glečera. Posle samo nekoliko meseci provedenih na hladnoj severnoj klimi, hodajući svako jutro do palate, Dekart je umro 11. februara 1650. godine od zapaljenja pluća, u pedeset i četvrtoj godini. Dela Dekart za radnim stolom. Podstaknut od strane prijatelja da objavi svoje ideje, Dekart je, iako čvrsto odlučivši da ne objavljuje Svet, kada je čuo za osudu Galileja, napisao kratak spis pod naslovom Reč o metodi (Discours de la method pour bien conduire sa raison et chercher la verite dans les sciences); ovo se delo često prevodi kao Rasprava. Međutim, Dekart u jednom pismu eksplicitno kaže da nije dao delu ime Rasprava zato što to isuviše podseća na sholastiku. Osim toga, reč je o polubiografskom tekstu, prvi njegov deo, i stoga je jedan od važnih izvora za Dekartovu biografiju. Uz Reč o metodi, Dekart je objavio i tri dodatka: Dioptrija (La Dioptrique), Meteori (Les Meteores) i čuveni spis Geometrija (La Geometrie). Teza je objavljena u Lajdenu (Leiden) 1637. godine. Dekart je prijateljima tada pisao: Pokušao sam u Dioptriji i Meteorima da pokažem da je moj metod bolji od tradicionalnog, a u Geometriji sam to i demonstrirao. Delo je govorilo o tome koji je, po Dekartovom mišljenju, bolji način sticanja znanja od onog koji je opisan kod Aristotela. Dekart je verovao da jedino matematika predstavlja sigurno znanje, pa je zato tvrdio da sve mora biti zasnovano na njoj. U Reči o metodi Dekart je prvi put formulisao temeljne principe svoje filozofije: radikalnu sumnju iz koje sledi uvid cogito, ergo sum (mislim, dakle jesam). Mogu sumnjati u sve, ali sam čin sumnje govori da ja kao sumnjajući moram postojati. Tu je i formulisao svoja dva dokaza za egzistenciju Boga, uzročni i ontološki. Dioptrija je delo o optici. Ideje koje ovde promoviše nisu suštinski nove. Njegov prilaz eksperimentu je bio od velikog doprinosa nauci. Meteori je delo o meteorologiji i značajno je po tome što je to prvi pokušaj da se sa naučne strane priđe proučavanju vremenskih prilika. Iako je većina Dekartovih tvrdnji bila pogrešna, što je i on mogao da uvidi da je uradio nekoliko lakših eksperimenata, posle objavljivanja ovog dela meteorologija je počela da se razvija kao nauka. Daleko najznačajniji deo njegove teze bila je Geometrija. To je bio prvi korak ka stvaranju pojma invarijantnosti i u tom delu Dekart predstavlja analitičku geometriju kao metod pomoću koga se geometrijske figure prikazuju pomoću algebarskih jednačina. Time je Dekart algebru doveo u vezu sa geometrijom. Algebra je u njegovom prikazu omogućila prepoznavanje tipičnih geometrijskih problema i dovela u vezu neke probleme koji sa geometrijske tačke gledišta nemaju ništa zajedničko. Takođe, algebra je u geometriju uvela najprirodnije proporcije i hijerarhije metoda. Ne samo da su se geometrijski problemi rešavali elegantno, brzo i potpuno, nego se bez odgovarajuće algebre ti problemi i ne bi mogli rešiti. Dekart je u ovom delu uveo i poznate konvencije za označavanje konstanti sa a, b, c... zatim promenljivih sa x, y, z... i stepenih funkcija sa eksponentima kakve danas poznajemo x², x³, metod za izolaciju korena poznatiji kao Dekartovo pravilo znakova, i tako dalje. Neke ideje u Geometriji su možda potekle ili su bile pod uticajem ranijih radova pojedinih matematičara, ali niko do Dekarta nije povezao algebru i geometriju. Dekartovo delo Meditacije, objavljeno 1641. godine, napisano je za filozofe i teologe. Sastoji se iz šest meditacija, O Stvarima u koje možda sumnjamo, O Prirodi i Čovekovom Intelektu, O Bogu: da postoji, O istini i greškama, O prirodi materije, O postojanju materije i stvarnoj razlici između tela i duše čoveka. Dekart nije želeo da Meditacije objavi pre nego što čuje šta o njima imaju da kažu učeni ljudi njegovog vremena, pa je zamolio Mersena da ih prosledi na što više adresa. Mersen je to i uradio i rezultat je sedam skupova primedaba na koje je Dekart napisao odgovore i objavio ih zajedno s Meditacijama. Pisci primedaba bili su vodeće ličnosti u tadašnjoj evropskoj zajednici učenih, između ostalih i Antoan Arno, Pjer Gasendi i Tomas Hobs. Primedbe su dale Dekartu priliku da razjasni mnoge aspekte svog temeljnog filozofskog dela: prirodu ideja i njihove objektivne stvarnosti, razumevanje Boga kao uzroka samog sebe (causa sui), odnos duše i tela, ontološki dokaz, učenje o stvorenosti večnih istina. „ Budući da se rađamo kao deca i da smo o čulnim stvarima donosili svakojake sudove još pre nego što smo svojim umom u potpunosti naučili da se složimo, brojne nas predrasude odvraćaju od istinskog saznanja. Tih se predrasuda, čini se, možemo rešiti samo ako jednom u životu svojevoljno počnemo da se dvoumimo o svemu onome u čiju se izvesnost makar i najmanje može posumnjati... Ali ako na taj način odbacimo sve što je u bilo kom pogledu dvosmisleno i možda lažno, možemo doduše lako da pretpostavimo da ne postoji ni Bog, ni nebo, ni telo, da nemamo ni ruku ni nogu i da uopšte nemamo tela ali se ne može pretpostaviti da mi, koji sve to mislimo, nismo ništa. Jer protivrečno je da misaono biće ne postoji dok misli. Prema tome, saznanje „mislim, dakle jesam“ (cogito, ergo sum) od svih je prvo i najsigurnije te se s njim susreće svako ko sistematično filozofira. ” — Rene Dekart, Principi filozofije, II, 1 i 7. Principi Filozofije delo je koje je objavljeno u Amsterdamu 1644. i za koje se Dekart nadao da će zameniti sholastičke udžbenike, te ga je i pisao nalik na njih, koristeći u prvom delu jedan više sholastički jezik nego što je to činio ranije. Ovo delo se sastoji iz četiri dela, u kojima Dekart pokušava da čitavom univerzumu pripiše matematičku osnovu, svodeći sva izučavanja na isključivo naučna. Ova ideja je bila veoma značajna, jer je usmerila nauku tog vremena. Dekart nije verovao da postoji interakcija na daljinu. Zato, po njemu, ne postoji vakuum oko Zemlje, jer bi u protivnom postojao način da se sila prenosi na daljinu. U mnogo čemu je Dekartova teorija, po kojoj sila deluje isključivo preko kontakta, bila prihvatljivija od misterioznog efekta gravitacije na daljinu. S druge strane, Dekartova teorija uzela je mnogo toga zdravo za gotovo, tj. u njoj Dekart pretpostavlja da važi nešto samo na osnovu svog verovanja da je to istina. On pretpostavlja da je univerzum ispunjen materijom koja se pomoću nekog prvobitnog kretanja pretvorila u sistem vrtloga koji drži planete, zvezde, Sunce i komete na svojim putanjama. Uprkos problemima sa teorijom vrtloga, to je bila vodeća teorija u Francuskoj čak i skoro sto godina nakon što je Njutn pokazao da je takav dinamički sistem nemoguć. Dejvid Bruster (David Brewster), Njutnov biograf iz 19. veka, rekao je o teoriji vrtloga, koju je Dekart u svoje vreme izneo, sledeće: Ova ideja se tako sigurno učvrstila ... Uopšte se nije postavljalo pitanje sumnje u ovu jednostavnu i fantastičnu teoriju Principa ... Neškolovan mozak nije mogao da poveruje u to da velike mase planeta vise u praznom prostoru i zadržavaju svoje orbite pod dejstvom nevidljive sile(?) Iako je Dekartova teorija podržavala prirodnu filozofiju teologa i metafizičara Henrija Mura (Henry Moore) i sam Mur joj je našao nekoliko prigovora. Uprkos tome za Dekartov rad je napisao: Ja cenim Dekarta kao čoveka koji je pronikao u suštinu Prirode i spoznao je više nego bilo ko drugi tokom ovih šesnaest vekova... Između 1648. i 1649. godine njih dvojica su razmenili mnogobrojna pisma u kojima je Mur istakao nekoliko značajnih zamerki Dekartovoj teoriji. Dekart kao da se nije ni osvrtao na njih. Mur ga je na kraju upitao: Zašto su tvoji vrtlozi u obliku elipsa, a ne recimo kolona ili cilindara, jer svaka tačka sa ose vrtloga je kao centar iz koga se uzvišena materija gubi, koliko ja vidim, konstantnim impulsom? ... šta je uzrok tome što se sve planete ne okreću u jednoj ravni? ... I Mesec, nije ni u ravni Zemljinog ekvatora, niti u ravni paralelnoj toj? Godine 1644, kada su objavljene Meditacije, Dekart je posetio Francusku. U Francusku se ponovo vratio 1647. kada je upoznao Paskala i prepirao se sa njim o tome da vakuum ne može da postoji. Treba još spomenuti i Dekartovu prepisku. Od deset tomova standardnog današnjeg izdanja njegovih dela, prepiska zauzima prvih pet (Oeuvres de Descartes, publ. par C. Adam et P. Tannery, popravljeno izdanje, Vrin, Paris, 1964). U pismima Dekart prvi put iznosi svoju doktrinu o stvorenosti večnih istina, raspravlja s Elizabetom, princezom Moravskom o strastima duše i dualizmu duše i tela, debatuje o fizici i metafizici. Načela metode U svom delu Raprava o metodu iznosi kritiku dotadašnje filozofske i naučne misli, te ukazuje na potrebu revizije pojmova i metoda kojima su se gradile naučne teorije. Osnova spoznaje treba biti mogućnost čoveka da svojim umom donosi red u proučavanje stvari te onda pravilno zaključuje. Njegova metoda pravilnog spoznavanja zasniva se na sledećim pravilima: Sve treba primati kritički i kao istinu uzeti samo ono što se uočava jasno i razgovetno (clare et distincte). Svaki problem podeliti u više delova, da bi se lakše došlo do rešenja. Zaključivati polazeći od jednostavnijeg prema složenom i tako, kao po stepenicama, doći do spoznaje. Proveriti, čineći opšte preglede, da nešto nije ispušteno. Kao uspešan primer primene tih metoda navodi euklidsku geometriju koja je izvedena iz najjednostavnijih i očiglednih istina. Njegova spoznajna teorija, čiji je osnovni stav metodička sumnja, dosledno izvedena iz njegovih filozofskih shvatanja. Danas se koristi u svim istraživačkim projektima u svim područjima nauke....

Prikaži sve...
990RSD
forward
forward
Detaljnije

Odlično stanje Svetovi Fotón (od grčke reči φωτός, što znači „svetlost“) je elementarna čestica, kvant elektromagnetnog zračenja (u užem smislu — svetlosti). To je čestica čija je masa mirovanja jednaka nuli, te se najčešće koristi izraz da se kaže da je foton bezmasena čestica. Naelektrisanje fotona je takođe jednako nuli. Spin fotona je 1, tako da foton može biti samo u dva spinska stanja sa helicitetom (odnosno projekcijom spina na smer kretanja) ±1. Helicitetu fotona u klasičnoj elektrodinamici odgovaraju pojmovi kružna desna i leva polarizacija elektromagnetnog talasa. Na foton, kao i na druge elementarne čestice, se odnosi čestično-talasni dualizam, tj. foton istovremeno poseduje i svojstva elementarne čestice i osobine talasa. Fotoni se obično obeležavaju slovom γ ~\gamma, zbog čega ih često nazivaju gama-kvantima (fotoni visokih energija) pri čemu su ti termini praktično sinonimi. Sa tačke gledišta Standardnog modela foton je bozon. Virtuelni fotoni[2] su prenosioci elektromagnetne interakcije koji na taj način obezbeđuju mogućnost uzajamnog delovanja između dva naelektrisanja.[3] Foton Simbol: γ , {\displaystyle ~\gamma ,} ponekad γ 0 , h ν {\displaystyle ~\gamma ^{0},h\nu } LASER.jpg Emitovani fotoni u koherentnom laserskom zraku Grupa: bozoni Učestvuje u interakciji: elektromagnetnoj i gravitacionoj Pronađena: 1923. (konačna potvrda) Masa: 0 Stabilnost: stabilan Naelektrisanje: 0 (<10−32 e[1]) Spin: 1 Istorija Uredi Savremena teorija svetlosti ima dugačku istoriju. Maks Plank je postulirao kvantni karakter zračenja elektromagnetnog polja 1900. godine sa ciljem objedinjenja svojstava toplotnog zračenja.[4] Termin „foton“ uveo je hemičar Gilbert Njutn Luis 1926. godine[5]. U godinama između 1905. i 1917. Albert Ajnštajn je objavio [6][7][8][9] niz radova posvećenih protivurečnosti rezultata eksperimenata i klasične talasne teorije svetlosti, fotoefektu i sposobnosti supstance da bude u toplotnoj ravnoteži sa elektromagnetnim zračenjem. Postojali su pokušaji da se objasni kvantna priroda svetlosti poluklasičnim modelima, u kojima je svetlost i dalje opisivana Maksvelovim jednačinama, bez uzimanja u obzir kvantovanja svetlosti, dok su objektima koji emituju i apsorbuju svetlost pripisavana kvantna svojstva. Bez obzira što su poluklasični modeli uticali na razvoj kvantne mehanike (što dokazuje to da neka tvrđenja poluklasičnih modela i posledice istih i dalje mogu naći u savremenoj kvantnoj teoriji[10]), eksperimenti su potvrdili Ajnštajnova tvrđenja da svetlost ima i kvantnu prirodu, odnosno da se elektromagnetno zračenje prenosi u strogo određenim malim delovima koji se nazivaju kvanti elektromagnetnog zračenja. Kvantovanje kao fenomen nije svojstveno samo elektromagnetnim talasima, već svim oblicima kretanja, pritom ne samo talasnim. Uvođenje pojma fotona je doprinelo stvaranju novih teorija i razvoju fizičkih instrumenata, a takođe je pogodovalo razvoju eksperimentalne i teorijske osnove kvantne mehanike. Na primer, otkriven je laser, Boze-Ajnštajnov kondenzat, formulisana je kvantna teorija polja i data je statistička interpretacija kvantne mehanike. U savremenom Standardnom modelu fizike elementarnih čestica postojanje fotona je posledica toga da su zakoni fizike invarijantni u odnosu na lokalnu simetriju u bilo kojoj tački prostor-vremena. Ovom simetrijom su određena unutrašnja svojstva fotona kao što su naelektrisanje, masa i spin. Među oblastima koje su zasnovane na razumevanju koncepcije fotona ističe se fotohemija, videotehnika, kompjuterizovana tomografija, merenje međumolekulskih rastojanja, itd. Fotoni se takođe koriste kao elementi kvantnih kompjutera i kvantnih uređaja za prenos podataka. Istorija naziva i obeležavanja Uredi Foton je prvobitno od strane Alberta Ajnštajna nazvan „svetlosnim kvantom“.[6] Savremen naziv, koji je foton dobio na osnovu grčke reči φῶς phōs (bio je uveden 1926. godine na inicijativu hemičara Gilberta Luisa, koji je objavio teoriju[11] u kojoj je fotone predstavio kao nešto što se ne može ni stvoriti ni uništiti. Luisova teorija nije bila dokazana i bila je u protivurečnosti sa eksperimentalnim podacima, dok je taj naziv za kvante elektromagnetnog zračenja postao uobičajan među fizičarima. U fizici foton se obično obeležava simbolom γ ~\gamma (po grčkom slovu „gama“). To potiče od oznake za gama zračenje koje je otkiveno 1900. godine i koje se sastojalo iz fotona visoke energije. Zasluga za otkriće gama zračenja, jednog od tri vida (α-, β- i γ-zraci) jonizujuće radijacije, koje su zračili tada poznati radioaktivni elementi, pripada Polu Vilardu, dok su elektromagnetnu prirodu gama-zraka otkrili 1914. godine Ernest Raderford i Edvard Andrejd. U hemiji i optičkom inženjerstvu za fotone se često koristi oznaka h ν , {\displaystyle ~h\nu ,} gde je h {\displaystyle ~h} — Plankova konstanta i ν {\displaystyle ~\nu } (grčko slovo „ni“ koje odgovara frekvenciji fotona). Proizvod ove dve veličine je energija fotona. Istorija razvitka koncepcije fotona Uredi Detaljnije: Svetlost Eksperiment Tomasa Janga u vezi sa interferencijom svetlosti na dva otvora (1805. godine) je pokazao da se svetlost može posmatrati kao talas. Na taj način su bile opovrgnute teorije svetlosti koje su je predstavljale sa čestičnom prirodom. U većini teorija razrađenih do XVIII века, svetlost je bila posmatrana kao mnoštvo čestica. Jedna od prvih teorija te vrste bila je izložena u „Knjizi o optici“ Ibna al Hajtama 1021. godine. U njoj je taj naučnik posmatrao svetlosni zrak u vidu niza malenih čestica koje ne poseduju nikakva kvalitativna čestična svojstva osim energije.[12] Pošto slični pokušaji nisu mogli da objasne pojave kao što su to refrakcija, difrakcija i dvostruko prelamanje zraka, bila je predložena talasna teorija svetlosti, koju su postavili Rene Dekart (1637),[13] Robert Huk (1665),[14] i Kristijan Hajgens (1678).[15] Ipak modeli zasnovani na ideji diskretne prirode svetlosti ostali su dominantni, uostalom zbog autoriteta onih koji su je zastupali, kao što je Isak Njutn.[16] Na početku 19. veka Tomas Jang i Ogisten Žan Frenel su jasno demonstrirali u svojim ogledima pojave interferencije i difrakcije svetlosti, posle čega su sredinom 19. veka talasni modeli postali opštepriznati.[17] Zatim je to učinio Džejms Maksvel 1865. godine u okviru svoje teorije,[18] gde navodi da je svetlost elektromagnetni talas. Potom je 1888. godine ta hipoteza bila potvrđena eksperimentalno Hajnrihom Hercom, koji je otkrio radio-talase.[19] Talasna teorija Maksvela koja je elektromagnetno zračenje posmatrala kao talas električnog i magnetnog polja 1900. godine se činila konačnom. Ipak, neki eksperimenti izvedni kasnije nisu našli objašnjenje u okviru ove teorije. To je dovelo do ideje da energija svetlosnog talasa može biti emitovana i apsorbovana u vidu kvanata energije hν. Dalji eksperimenti su pokazali da svetlosni kvanti poseduju impuls, zbog čega se moglo zaključiti da spadaju u elementarne čestice. U saglasnosti sa relativističkom predstavom bilo koji objekat koji poseduje energiju poseduje i masu, što objašnjava postojanje impulsa kod elektromagnetnog zračenja. Kvantovanjem tog zračenja i apsorpcijom može se naći impuls pojedinih fotona. Talasna teorija Maksvela ipak nije mogla da objasni sva svojstva svetlosti. Prema toj teoriji, energija svetlosnog talasa zavisi samo od njegovog intenziteta, ne i od frekvencije. U stvari rezultati nekih eksperimenata su govorili obrnuto: energija predata atomima od strane svetlosti zavisi samo od frekvencije svetlosti, ne i od njenog intenziteta. Na primer neke hemijske reakcije mogu se odvijati samo u prisutstvu svetlosti čija frekvencija iznad neke granice, dok zračenje čija je frekvencija ispod te granične vrednosti ne može da izazove začetak reakcije, bez obzira na intenzitet. Analogno, elektroni mogu biti emitovani sa površine metalne ploče samo kada se ona obasja svetlošću čija je frekvencija veća od određene vrednosti koja se naziva crvena granica fotoefekta, a energija tih elektrona zavisi samo od frekvencije svetlosti, ne i njenog intenziteta.[20][21] Istraživanja svojstava zračenja apsolutno crnog tela, koja su vršena tokom skoro četrdeset godina (1860—1900),[22] zaveršena su formulisanjem hipoteze Maksa Planka[23][24] o tome da energija bilo kog sistema pri emisiji ili apsorpciji elektromagnetnog zračenja frekvencije ν {\displaystyle ~\nu } može biti promenjena samo za veličinu koja odgovara energiji kvanta E = h ν {\displaystyle ~E=h\nu }, gde je h {\displaystyle ~h} — Plankova konstanta.[25]Albert Ajnštajn je pokazao da takva predstava o kvantovanju energije treba da bude prihvaćena, kako bi se objasnila toplotna ravnoteža između supstance i elektromagnetnog zračenja.[6][7] Na istom osnovu je teorijski bio objašnjen fotoefekat, opisan u radu za koji je Ajnštajn 1921. godine dobio Nobelovu nagradu za fiziku.[26] Nasuprot tome, teorija Maksvela dopušta da elektromagnetno zračenje poseduje bilo koju vrednost energije. Mnogi fizičari su prvobitno pretpostavljali da je kvantovanje energije rezultat nekog svojstva materije koja emituje i apsorbuje elektromagnetne talase. Ajnštajn je 1905. godine pretpostavio da kvantovanje energije predstavlja svojstvo samog elektromagnetnog zračenja.[6] Priznajući tačnost Maksvelove teorije, Ajnštajn je primetio da mnoge nesuglasice sa eksperimentalnim rezultatima mogu biti objašnjene ako je energija svetlosnog talasa lokalizovana u kvantima, koji se kreću nezavisno jedni od drugih, čak ako se talas neprekidno prostire u prostor-vremenu.[6] U godinama između 1909.[7] i 1916,[9] Ajnštajn je pokazao, polazeći od tačnosti zakona zračenja apsolutno crnog tela, da kvant energije takođe mora posedovati impuls p = h / λ {\displaystyle ~p=h/\lambda },[27] . Impuls fotona bio je otkrio eksperimentalno[28][29]Artur Kompton, za šta je dobio Nobelovu nagradu za fiziku 1927. godine. Ipak, pitanje usaglašavanja talasne teorije Maksvela sa eksperimentalnim činjenicama je ostalo otvoreno.[30] Niz autora je utvrdio da se emisija i apsorpcija elektromagnetnih talasa dešavaju u porcijama, kvantima, dok je proces njihovog prostiranja neprekidan. Kvantni karakter pojava kao što su zračenje i apsorpcija dokazuje da je nemoguće da mikrosistem poseduje proizvoljnu količinu energije. Korpuskularne predstave su dobro usaglašene sa eksperimentalno posmatranim zakonitostima zračenja i apsorpcije elektromagnetnih talasa, uključujući toplotno zračenje i fotoefekat. Ipak, po mišljenju predstavnika onih koji su zastupali taj pravac eksperimentalni podaci su išli u prilog tome da kvantna svojstva elektromagnetnog talasa ne bivaju ispoljena pri prostiranju, rasejanju i difrakciji, ukoliko pritom ne dolazi do gubitka energije. U procesima prostiranja elektromagnetni talas nije lokalizovan u određenoj tački prostora, ponaša se kao celina i opisuje Maksvelovim jednačinama. [31] Rešenje je bilo pronađeno u okviru kvantne elektrodinamike. Rani pokušaji osporavanja Uredi Do 1923. godine većina fizičara je odbijalo da prihvati ideju da elektromagnetno zračenje poseduje kvantna svojstva. Umesto toga oni su bili skloni objašnjavanju ponašanja fotona kvantovanjem materije, kao na primer u Borovoj teoriji za atom vodonika. Mada su svi ovi poluklasični modeli bili samo približno tačni i važili samo za proste sisteme, oni su doveli do stvaranja kvantne mehanike. Kao što je pomenuto u nobelovskoj lekciji Roberta Milikena, predviđanja koja je Ajnštajn napravio 1905. godine bila su proverena eksperimentalno na nekoliko nezavisnih načina u prve dve decenije 20. veka[32]. Ipak, Komptonovog eksperimenta[28] ideja kvantne prirode elektromagnetnog zračenja nije bila priznata među svim fizičarima (pogledati Nobelovske lekcije Vilhelma Vina,[22] Maksa Plank[24] i Roberta Milikena[32]), što je bilo povezano sa uspesima talasne teorije svetlosti Maksvela. Neki fizičari su smatrali da kvantovanje energije u procesima emisije i apsorpcije svetlosti bilo posledica nekih svojstava supstance koja tu svetlost zrači ili apsorbuje. Nils Bor, Arnold Zomerfeld i drugi su razrađivali modele atoma sa energetskim nivoima koji su objašnjavali spektar zračenja i apsorpcije kod atoma i bili u saglasnosti sa eksperimentalno utvrđenim spektrom vodonika[33] (ipak, dobijanje adekvatnog spektra drugih atoma ovi modeli nisu omogućavali). Samo rasejanje fotona slobodnim elektronima, koji po tadašnjem shvatanju nisu posedovali unutrašnju strukturu, nateralo je mnoge fizičare da priznaju kvantnu prirodu svetlosti. Ipak čak posle eksperimenata koje je načinio Kompton, Nils Bor, Hendrik Kramers i Džon Slejter preduzeli su poslednji pokušaj spašavanja klasičnog modela talasne prirode svetlosti, bez uračunavanja kvantovanja, objavivši BKS teoriju.[34] Za objašnjavanje eksperimentalnih činjenica predložili su dve hipoteze[35]: 1. Energija i impuls se održavaju samo statistički (po srednjoj vrednosti) pri uzajmnom delovanju materije i zračenja. U određenim eksperimentalnim procesima kao što su to emisija i apsorpcija, zakoni održanja energije i impulsa nisu ispunjeni. Ta pretpostavka je objašnjavala stepeničastu promenu energije atoma (prelazi na energetskim nivoima) sa neprekidnošću promene energije samog zračenja. 2. Mehanizam zračenja poseduje specifičan karakter. Spontano zračenje posmatrano je kao zračenje stimulisano „virtuelnim“ elektromagnetnim poljem. Ipak eksperimenti Komptona su pokazali da se energija i impuls potpuno održavaju u elementarnim procesima, a takođe da se njegov račun promene učestalosti padajućeg fotona u komptonovskom rasejanju ispunjava sa tačnošću do 11 znakova. Ipak krah BKS modela inspirisao je Vernera Hajzenberga na stvaranje matrične mehanike.[36] Jedan od eksperimenata koji su potvrdili kvantnu apsorpciju svetlosti bio je ogled Valtera Bote, koji je sproveo 1925. godine. U tom ogledu tanki metalni sloj je bio izložen rendgenskom zračenju malog intenziteta. Pritom je on sam postao izvor slabog zračenja. Polazeći od klasičnih talasnih predstava to zračenje se u prostoru mora raspoređivati ravnomerno u svim pravcima. U tom slučaju dva instrumenta, postavljena levo i desno od metalnog sloja, trebalo je da ga zabeleže istovremeno. Ipak, rezultat ogleda je pokazivao suprotno: zračenje su beležili čas levi, čas desni instrument i nikad oba istovremeno. To je značilo da se apsorpcija odvija porcijama, tj. kvantima. Ogled je na taj način potvrdio fotonsku teoriju zračenja i postao samim tim još jednim eksperimentalnim dokazom kvantnih svojstava elektromagnetnog zračenja[37]. Neki fizičari[38] su nastavili da razrađuju poluklasične modele, u kojim elektromagnetno zračenje nije smatrano kvantnim, ali pitanje je dobilo svoje rešenje samo u okviru kvantne mehanike. Ideja korišćenja fotona pri objašnjavanju fizičkih i hemijskih eksperimenata postala je opštepriznata u 70-im godinama 20. veka. Sve poluklasične teorije većina fizičara je smatrala osporenim u 70-im i 80-im godinama u eksperimentima.[39] Na taj način, ideja Planka o kvantnim svojstvima elektromagnetnog zračenja i na osnovu nje razvijena Ajnštajnova hipoteza smatrane su dokazanim. Fizička svojstva fotona Uredi Fejnmanov dijagram na kojem je predstavljena razmena virtuelnim fotonom (označen na slici talasastom linijom) između pozitrona i elektrona. Foton je čestica bez mase mirovanja. Spin fotona jednak je 1 (čestica je bozon), ali zbog mase mirovanja jednakoj nuli značajnijom karakteristikom se javlja projekcija spina čestice na pravac kretanja. Foton može biti samo u dva spinska stanja ± 1 {\displaystyle \pm 1}. Tom svojstvu u klasičnoj elektrodinamici odgovara elektromagnetni talas.[5] Masa mirovanja fotona smatra se jednakom nuli, što se zasniva na eksperimentu i teorijskim principima. Zbog toga je brzina fotona jednaka brzini svetlosti. Ako fotonu pripišemo relativističku masu (termin polako izlazi iz upotrebe) polazeći od jednakosti m = E c 2 {\displaystyle m={\tfrac {E}{c^{2}}}} vidimo da ona iznosi m = h ν c 2 {\displaystyle m={\tfrac {h\nu }{c^{2}}}}. Foton je sam svoja antičestica).[40] Foton se ubraja u bozone. Učestvuje u elektromagnetnoj i gravitacionoj interakciji.[5] Foton ne poseduje naelektrisanje i ne raspada se spontano u vakuumu, stabilan je. Foton može imati jedno od dva stanja polarizacije i opisuje se sa tri prostorna parametra koji sastavljaju talasni vektor koji određuje njegovu talasnu dužinu λ {\displaystyle ~\lambda } i smer prostiranja. Fotoni nastaju u mnogim prirodnim procesima, na primer, pri ubrzanom kretanju naelektrisanja, pri prelazu atoma ili jezgra iz pobuđenog u osnovno stanje manje energije, ili pri anihilaciji para elektron-pozitron. Treba primetiti da pri anihilaciji nastaju dva fotona, a ne jedan, pošto u sistemu centra mase čestica koje se sudaraju njihov rezultujući impuls jednak nuli, a jedan dobijeni foton uvek ima impuls različit od nule. Zakon održanja impulsa stoga traži nastanak bar dva fotona sa ukupnim impulsom jednakom nuli. Energija fotona, a, samim tim i njihova frekvencija, određena je zakonom održanja energije. Pri obrnutim procesima- pobuđivanju atoma i stvaranju elektron-pozitron para dolazi do apsorpcije fotona. Ovaj proces je dominantan pri prostiranju gama-zraka visokih energija kroz supstancu. Ako je energija fotona jednaka E {\displaystyle ~E}, onda je impuls p → {\displaystyle {\vec {p}}}povezan sa energijom jednakošću E = c p {\displaystyle ~E=cp}, gde je c {\displaystyle ~c} — brzina svetlosti (brzina kojom se foton uvek kreće kao čestica bez mase). Radi upoređivanja za čestice koje poseduju masu mirovanja, veza mase i impulsa sa energijom određena je formulom E 2 = c 2 p 2 + m 2 c 4 {\displaystyle ~E^{2}=c^{2}p^{2}+m^{2}c^{4}}, što pokazuje specijalna teorija relativnosti.[41] U vakuumu energija i impuls fotona zavise samo od njegove frekvencije ν {\displaystyle ~\nu } (ili, što je ekvivalentno prethodnom, od njegove talasne dužine λ = c / ν {\displaystyle ~\lambda =c/\nu }): E = ℏ ω = h ν {\displaystyle E=\hbar \omega =h\nu }, p → = ℏ k → {\displaystyle {\vec {p}}=\hbar {\vec {k}}}, Odatle sledi da je impuls jednak: p = ℏ k = h λ = h ν c {\displaystyle p=\hbar k={\frac {h}{\lambda }}={\frac {h\nu }{c}}}, gde je ℏ {\displaystyle ~\hbar } — Dirakova konstanta, jednaka h / 2 π {\displaystyle ~h/2\pi }; k → {\displaystyle {\vec {k}}} — talasni vektor i k = 2 π / λ {\displaystyle ~k=2\pi /\lambda } — njegova veličina (talasni broj); ω = 2 π ν {\displaystyle ~\omega =2\pi \nu } — ugaona frekvencija. Talasni vektor k → {\displaystyle {\vec {k}}} određuje smer kretanja fotona. Spin fotona ne zavisi od njegove frekvencije. Klasične formule za energiju i impuls elektromagnetnog zračenja mogu biti dobijeni polaženjem od predstava o fotonu. Na primer pritisak zračenja postoji usled impulsa koji fotoni predaju telu pri njihovoj apsorpciji. Zaista, pritisak je sila koja deluje na jediničnu površinu, a sila je jednaka promrni impulsa u vremenu[42], pa se otuda javlja taj pritisak. Korpuskularno-talasni dualizam i princip neodređenosti Uredi Detaljnije: Princip dualnosti talas-čestica i Hajzenbergov princip neodređenosti Fotonu je svojstven korpuskularno-talasni dualizam. Sa jedne strane foton pokazuje svojstva talasa u pojavama difrakcije i interferencije u slučaju da su karakteristične veličine barijere uporedive sa talasnom dužinom fotona. Na primer, pojedini fotoni prolazeći kroz dvostruki otvor stvaraju na pozadini interferencionu sliku koja se može opisati Maksvelovim jednačinama[43]. Ipak eksperimenti pokazuju da se fotoni emituju i apsorbuju u celini objektima koje imaju dimenzije mnogo manje od talasne dužine fotona, (na primer atomima) ili se uopšte mogu smatrati tačkastim (na primer elektronima). Na taj način fotoni se u procesu emitovanja i apsorpcije zračenja ponašaju kao čestice. U isto vreme ovakav opis nije dovoljan; predstava o fotonu kao tačkastoj čestici čija je trajektorija određena elektromagnetnim poljem biva opovrgnuta korelacionim eksperimentima sa pomešanim stanjima fotona (pogledati Paradoks Ajnštajn-Podolskog-Rozena). Misaoni eksperiment Hajzenberga o određivanju mesta na kojem se nalazi elektron (obojen plavo) pomoću gama-zračnog mikroskopa visokog uvećanja. Padajući gama-zraci (prikazani zelenom bojom) rasejavaju se na elektronu i ulaze v aperturni ugao mikroskopa θ. Rasejani gama-zraci prikazani su na slici crvenom bojom. Klasična optika pokazuje da položaj elektrona može biti određen samo sa ograničenom tačnošću vrednosti Δx, koja zavisi od ugla θ i od talasne dužine λ upadnih zraka. Ključnim elementom kvantne mehanike javlja se Hajzenbergov princip neodređenosti, koji ne dozovoljava da se istovremeno tačno odrede prostorne koordinate čestice i njen impuls u tim koordinatama.[44] Važno je primetiti da je kvantovanje svetlosti i zavisnost energije i impulsa od frekvencije neophodno za ispunjavanje principa neodređenosti primenjenog na naelektrisanu masivnu česticu. Ilustracijom toga može poslužiti poznat misaoni eksperiment sa idealnim mikroskopom koji određuje prostorne koordinate elektrona obasjavanjem istog svetlošću i registrovanjem rasejane svetlosti (gama-mikroskop Hajzenberga). Položaj elektrona može biti određen sa tačnošću Δ x {\displaystyle ~\Delta x}, zavisnom od samog mikroskopa. Polaženjem od predstava klasične optike: Δ x ∼ λ sin ⁡ θ , {\displaystyle \Delta x\sim {\frac {\lambda }{\sin \theta }},} gde je θ {\displaystyle ~\theta } — aperturni ugao mikroskopa. Na taj način se neodređenost koordinate Δ x {\displaystyle ~\Delta x} može učiniti jako malom smanjenjem talasne dužine λ {\displaystyle ~\lambda } upadnih zraka. Ipak posle rasejanja elektron dobija neki dodatni impuls, pri čemu je njegova neodređenost jednaka Δ p {\displaystyle ~\Delta p}. Ako upadno zračenje ne bi bilo kvantnim, ta neodređenost bi mogla postati jako mala smanjenjem intenziteta zračenja. Talasna dužina i intenzitet upadne svetlosti mogu se menjati zavisno jedan od drugoga. Kao rezultat u odsutstvu kvantovanja svetlosti postalo bi moguće istovremeno sa velikom tačnošću odrediti položaj elektrona u prostoru i njegov impuls, što se protivi principu neodređenosti. Nasuprot tome, Ajnštajnova formula za impuls fotona u potpunosti zadovoljava princip neodređenosti. S obzirom da se foton može rasejati u bilo kom pravcu u granicama ugla θ {\displaystyle ~\theta }, neodređenost peredatog elektronu impulsa jednaka je: Δ p ∼ p ϕ sin ⁡ θ = h λ sin ⁡ θ . {\displaystyle \Delta p\sim p_{\mathrm {\phi } }\sin \theta ={\frac {h}{\lambda }}\sin \theta .} Posle množenja prvog izraza drugim dobija se: Δ x Δ p ∼ h {\displaystyle \Delta x\Delta p\,\sim \,h}. Na taj način ceo svet je kvantovan: ako supstanca podleže zakonima kvantne mehanike onda to mora biti slučaj i sa fizičkim poljem, i obrnuto [45]. Analogno, princip neodređenosti fotonima zabranjuje tačno mernje broja n {\displaystyle ~n} fotona u elektromagnetnom talasu i fazu φ {\displaystyle ~\varphi } tog talasa: Δ n Δ φ > 1. {\displaystyle ~\Delta n\Delta \varphi >1.} I fotoni, i čestice supstance (elektroni, nukleoni, atomska jezgra, atomi itd.), koje poseduju masu mirovanja pri prolasku kroz dva blisko postavljena uska otvora daju slične interferencione slike. Za fotone se ta pojava može opisati Maksvelovim jednačinama, dok se za masivne čestice koristi Šredingerova jednačina. Moglo bi se pretpostaviti da su Maksvelove jednačine samo uprošćen oblik Šredingerove jednačine za fotone. Ipak sa tim se ne slaže većina fizičara[46][47]. S jedne strane te jednačine se razlikuju u matematičkom smislu: za razliku od Maksvelovih jednačina (koje opisuju polje tj. stvarne funkcije koordinata i vremena), Šredingerova jednačina je kompleksna (njeno rešenje je polje koje uopšteno govoreći predstavlja kompleksnu funkciju). S druge stane pojam verovatnoće talasne funkcije koji ulazi u Šredingerovu jednačinu ne može biti primenjen na foton.[48] Foton je čestica bez mase mirovanja, zato on ne može biti lokalizovan u prostoru bez uništenja. Formalno govoreći, foton ne možet imati koordinatno sopstveno stanje | r ⟩ {\displaystyle |\mathbf {r} \rangle } i na taj način običan Hajzenbergov princip neodređenosti Δ x Δ p ∼ h {\displaystyle \Delta x\Delta p\,\sim \,h} se na njega ne može primenti. Bili su predloženi izmenjeni oblici talasne funkcije za fotone,[49][50][51][52] ali oni nisu postali opštepriznati. Umesto toga rešenje se traži u kvantnoj elektrodinamici. Boze-Ajnštajnov model fotonskog gasa Uredi Detaljnije: Boze-Ajnštajnova statistika Kvantna statistika primenjna na čestice sa celobrojnim spinom bila je predložena 1924. godine od strane indijskog fizičara Bozea za svetlosne kvante i proširena zahvaljujući Ajnštajnu na sve bozone. Elektromagnetno zračenje unutar neke zapremine može se posmatrati kao idealni gas koji se sastoji iz mnoštva fotona između kojih praktično ne postoji interakcija. Termodinamička ravnoteža tog fotonskog gasa dostiže se putem interakcije sa zidovima. Ona nastaje kada zidovi emituju onoliko fotona u jedinici vremena koliko i apsorbuju.[53] Pritom se unutar zapremine postoji određena raspodela čestica po energijama. Boze je dobio Plankov zakon zračenja apsolutno crnog tela, uopšte ne koristeći elektrodinamiku, samo modifikujući račun kvantnih stanja sistema fotona u datoj fazi.[54] Tako je bilo ustanovljeno da broj fotona u apsolutno crnoj oblasti, energija kojih se proteže na intervalu od ε {\displaystyle ~\varepsilon } do ε + d ε , {\displaystyle \varepsilon +d\varepsilon ,} jednak:[53] d n ( ε ) = V ε d ε 2 π 2 ℏ 3 c 3 ( e ε / k T − 1 ) , {\displaystyle dn(\varepsilon )={\frac {V\varepsilon d\varepsilon ^{2}}{\pi ^{2}\hbar ^{3}c^{3}(e^{\varepsilon /kT}-1)}},} gde je V {\displaystyle ~V} — njena zapremina, ℏ {\displaystyle ~\hbar } — Dirakova konstanta, T {\displaystyle ~T} — temperatura ravnotežnog fotonskog gasa (ekvivalentna temperaturi zidova). U ravnotežnom stanju elektromagnetno zračenje apsolutno crnog tela se opisuje istim termodinamičkim parametrima kao i običan gas: zapreminom, temperaturom, energijom, entropijom i dr. Zračenje vrši pritisak P {\displaystyle ~P} na zidove pošto fotoni poseduju impuls.[53] Veza tog pritiska i temperature izražena je jednačinom stanja fotonskog gasa: P = 1 3 σ T 4 , {\displaystyle P={\frac {1}{3}}\sigma T^{4},} gde je σ {\displaystyle ~\sigma } — Štefan-Bolcmanova konstanta. Ajnštajn je pokazao da je ta modifikacija ekvivalentna priznavanju toga da se dva fotona principijelno ne mogu razlikovati, a među njima postoji „tajanstvena nelokalizovana interakcija“,[55][56] sada shvaćena kao potreba simetričnosti kvantnomehaničkih stanja u odnosu na preraspodelu čestica. Taj rad doveo je do stvaranja koncepcije koherentnih stanja i pogodovao stvaranju lasera. U istim člancima Ajnštajn je proširio predstave Bozea na elementarne čestice sa celobrojnim spinom (bozone) i predvideo pojavu masovnog prelaza čestica bozonskog gasa u stanje sa minimalnom energijom pri smanjenju temperature do nekog kritičnog nivoa (pogledati Boze-Ajnštajnova kondenzacija). Ovaj efekat je 1995. godine posmatran eksperimentalno, a 2001. autorima eksperimenta bila je uručena Nobelova nagrada.[57] Po savremenom shvatanju bozoni, u koje se ubraja i foton, podležu Boze-Ajnštajnovoj statistici, a fermioni, na primer elektroni, Fermi-Dirakovoj statistici.[58] Spontano i prinudno zračenje[59] Uredi Detaljnije: Laser Ajnštajn je 1916. godine pokazao da Plankov zakon zračenja za apsolutno crno telo može biti izveden polaženjem od sledećih poluklasičnih predstava: Elektroni se u atomima nalaze na energetskim nivoima; Pri prelazu elektrona među tim nivoima atom emituje ili apsorbuje foton. Osim toga smatralo se da emitovanje i apsorpcija svetlosti atomima dešava nezavisno jedno od drugoga i da toplotna ravnoteža u sistemu biva održana usled interakcije sa atomima. Posmatrajmo zapreminu koja se nalazi u toplotnoj ravnoteži i koja je ispunjena elektromagnetnim zračenjem koje može biti emitovano i apsorbovana zidivima koji je ograničavaju. U stanju toplotne ravnoteže spektralna gustina zračenja je ρ ( ν ) {\displaystyle ~\rho (\nu )} i zavisi od frekvencije fotona ν {\displaystyle ~\nu } dok po srednjoj vrednosti ne zavisi od vremena. To znači da verovatnoća emitovanja fotona proizvoljnog fotona mora biti jednaka verovatnoći njegove apsorpcije.[8] Ajnštajn je počeo da traži proste uzajamne veze među brzinom apsorpcije i emitovanja. U njegovom modelu brzina R j i {\displaystyle ~R_{ji}} apsorpcije fotona frekvencije ν {\displaystyle ~\nu } i prelaza atoma sa energetskog nivoa E j {\displaystyle ~E_{j}} na nivo više energije E i {\displaystyle ~E_{i}} je proporcionalna broju N j {\displaystyle ~N_{j}} atoma sa energijom E j {\displaystyle ~E_{j}} i spektralne gustine zračenja ρ ( ν ) {\displaystyle ~\rho (\nu )} za okolne fotone iste frekvencije: R j i = N j B j i ρ ( ν ) {\displaystyle ~R_{ji}=N_{j}B_{ji}\rho (\nu )}. Ovde je B j i {\displaystyle ~B_{ji}} konstanta brzine apsorpcije. Za ostvarenje suprotnog procesa postoji dve mogućnosti: spontano zračenje fotona i vraćanje elektrona na niži energetski nivo usled interakcije sa slučajnim fotonom. U saglasnosti sa gore opisanim prilazom odgovarajuća brzina R i j {\displaystyle ~R_{ij}}, koja karakteriše zračenje sistema fotona frekvencije ν {\displaystyle ~\nu } i prelaz atoma sa višeg energetskog nivoa E i {\displaystyle ~E_{i}} na nivo manje energije E j {\displaystyle ~E_{j}}, jednaka je: R i j = N i A i j + N i B i j ρ ( ν ) {\displaystyle ~R_{ij}=N_{i}A_{ij}+N_{i}B_{ij}\rho (\nu )}. Ovde je A i j {\displaystyle ~A_{ij}} — koeficijent spontanog zračenja, B i j {\displaystyle ~B_{ij}} — koeficijent odgovoran za prinudno zračenje pod dejstvom slučajnih fotona. Pri termodinamičkoj ravnoteži broj atoma u energetskom stanju i {\displaystyle ~i} i j {\displaystyle ~j} po srednjoj vrednosti mora biti konstantan u vremenu, odakle sledi da veličine R j i {\displaystyle ~R_{ji}} i R i j {\displaystyle ~R_{ij}} moraju biti jednake. Osim toga, po analogiji sa Bolcmanovom statistikom: N i N j = g i g j exp ⁡ E j − E i k T {\displaystyle {\frac {N_{i}}{N_{j}}}={\frac {g_{i}}{g_{j}}}\exp {\frac {E_{j}-E_{i}}{kT}}}, gde je g i , j {\displaystyle ~g_{i,j}} — broj linearno nezavisnih rešenja koje odgovaraju datom kvantnom stanju i energiji energetskog nivoa i {\displaystyle ~i} i j {\displaystyle ~j}, E i , j {\displaystyle ~E_{i,j}} — energija tih nivoa, k {\displaystyle ~k} — Bolcmanova konstanta, T {\displaystyle ~T} — temperatura sistema. Iz rečenog sledi zaključak da g i B i j = g j B j i {\displaystyle ~g_{i}B_{ij}=g_{j}B_{ji}} i: A i j = 8 π h ν 3 c 3 B i j {\displaystyle A_{ij}={\frac {8\pi h\nu ^{3}}{c^{3}}}B_{ij}}. Koeficijenti A {\displaystyle ~A} i B {\displaystyle ~B} nazivaju se Ajnštajnovim koeficijentima.[60] Ajnštajn nije uspeo gustinom da objasni sve ove jednačine ali je smatrao da će ubuduće biti moguće da se pronađu koeficijenti A i j {\displaystyle ~A_{ij}}, B j i {\displaystyle ~B_{ji}} i B i j {\displaystyle ~B_{ij}}, kada „mehanika i elektrodinamika budu izmenjene tako da će odgovarati kvantnoj hipotezi“.[61] I to se stvarno dogodilo. Pol Dirak je 1926. godine dobio konstantu B i j {\displaystyle ~B_{ij}}, koristeći poluklasični metod,[62] a 1927. godine uspešno je našao sve te konstante polazeći od osnovnih principa kvantne teorije.[63][64] Taj rad je postao osnovom kvantne elektrodinamike, tj. teorije kvantovanja elektromagnetnog polja. Prilaz Diraka, nazvan metodom sekundarnog kvantovanja, postao je jednim od osnovnih metoda kvantne teorije polja.[65][66][67] Treba primetiti da su u ranoj kvantnoj mehanici samo čestice supstance, a ne i elektromagno polje, smatrane kvantnomehaničkim. Ajnštajn je bio uznemiren time da mu se teorija činila nepotpunom, još više pošto nije mogla da opiše smer spontanog zračenja fotona. Prirodu kretanja svetlosnih čestica sa aspekta verovatnoće najpre je razmotrio Isak Njutn u svom objašnjenju pojave dvostrukog prelamanja zraka (efekat razlaganja svetlosnog zraka na dve komponente u anizotropnim sredinama) i uopšteno govoreći pojave razlaganja svetlosnog zraka na granici dve sredine na odbijeni i prelomljeni zrak. Njutn je pretpostavio da „skrivene promenljive“, koje karakterišu svetlosne čestice određuju u koju od graničnih sredina će otići data čestica.[16] Analogno se i Ajnštajn, počevši sa distanciranjem od kvantne mehanike, nadao nastanku opštije teorije mikrosveta u kojoj nema mesta slučajnosti.[30] Treba primetiti da Maksom Bornom uvedena interpretacija talasnih funkcija preko verovatnoće[68][69] bila stimulisana poznim radom Ajnštajna koji je tražio opštu teoriju.[70] Sekundarno kvantovanje Uredi Detaljnije: Kvantna teorija polja i Sekundarno kvantovanje Različiti elektromagnetni moduli (na primer označeni na slici) mogu biti posmatrani kao nezavisni kvantni harmonijski oscilatori. Svaki foton odgovara jediničnoj energiji E=hν. Piter Debaj dobio je 1910. godine Plankov zakon zračenja za apsolutno crno telo polazeći od relativno jednostavne pretpostavke.[71] On je razložio elektromagnetno polje na Furijeov red i pretpostavio da energija svakog modula celobrojni delilac veličine h ν , {\displaystyle ~h\nu ,} gde ν {\displaystyle ~\nu } je odgovarajuća frekvencija. Geometrijska suma dobijenih modula predstavlja Plankov zakon zračenja. Ipak pokazalo se da je nemoguće korišćenjem datog prilaza dobiti tačan oblik formule za fluktacije energije toplotnog zračenja. Rešenje ovog problema pronašao je Ajnštajn 1909. godine.[7] Maks Born, Verner Hajzenberg i Paskval Jordan su 1925. godine dali nešto drugačiju interpretaciju Debajeve metode.[72] Koristeći klasične može se pokazati da je Furijeov red elektromagnetnog polja sastoji iz mnoštva ravnih talasa pri čemu svaki od njih odgovara svom talasnom vektoru i svojem stanju polarizacije što je ekvivalentno mnoštvu harmonijskih oscilatora. Sa aspekta kvantne mehanike energetski nivoi tih oscilatora bivaju određeni odnosom E = n h ν , {\displaystyle ~E=nh\nu ,} gde je ν {\displaystyle ~\nu } frekvencija oscilatora. Principijelno novim korakom postalo je to da je modul sa energijom E = n h ν {\displaystyle ~E=nh\nu } posmatran ovde kao stanje od n {\displaystyle ~n} fotona. Takav metod omogućio je dobijanje ispravnog oblika formule za fluktacije energije zračenja apsolutno crnog tela. U kvantnoj teoriji polja verovatnoća da dođe do nekog događaja izrčunava se kao kvadrat modula sume amplituda verovatnoće (kompleksnih brojeva) svih mogućih načina na koji se dati događaj može realizovati kao na Fejnmanovom dijagramu, postavljenom ovde. Pol Dirak je otišao još dalje.[63][64] On je posmatrao interakciju između naelektrisanja i elektromagnetnog polja kao mali poremećaj koji izaziva prelaze u fotonskim stanjima menjajući broj fotona u modulima pri održanju celookupne energje i impulsa sistema. Dirak je pošavši od toga uspeo da dobije Ajnštajnoove koeficijente A i j {\displaystyle ~A_{ij}} i B i j {\displaystyle ~B_{ij}} iz prvih principa i pokazao da je Boze-Ajnštajnova statistika za fotone prirodna posledica korektnog kvantovanja elektromagnetnog polja (sam Boze se kretao u suprotnom smeru — on je dobio Plankov zakon zračenja za apsolutno crno telo postuliranjem statističke raspodele Boze — Ajnštajna). U to doba još nije bilo poznato da svi bozoni, uključujući i fotone podležu Boze-Ajnštajnovoj statistici. Dirakova teorija poremećaja uvodi pojam virtuelnog fotona, kratkotrajnog prelaznog stanja elektromagnetnog polja. Elektrostatička i magnetna interakcija ostvaruje se putem takvih virtualnih fotona. U takvim kvantnim teorijama polja amplituda verovatnoće posmatranih događaja se računa sumiranjem po svim mogućim prelaznim putevima, uključujući čak nefizičke; pošto virtuelni fotoni ne moraju zadovoljavati disperzioni odnos E = p c {\displaystyle ~E=pc}, ispunjen za fizičke čestice bez mase, i mogu imati dodatna polarizaciona stanja (kod realnih fotona postoje dva stanja polarizacije dok kod virtualnih — tri ili četiri, u zavisnosti od korišćene kalibracije). Mada virtuelne čestice pa i virtuelni fotoni ne mogu biti posmatrani neposredno,[73] oni unose merljiv udeo u verovatnoću posmatranih kvantnih stanja. Šta više, račun po drugom i višim redovima teorije poremećaja ponekad dovodi do beskonačno velikih vrednosti za neke fizičke veličine. Druge virtuelne čestice takođe mogu doprineti vrednosti sume. Na primer, dva fotona mogu interagovati posredstvom virtuelnog ele Marija Juranji Fotoni Fizika

Prikaži sve...
490RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Milutin Milanković (Dalj, 28. maj 1879 — Beograd, 12. decembar 1958) bio je srpski matematičar, astronom, klimatolog, geofizičar, građevinski inženjer, doktor tehničkih nauka, kao i popularizator nauke i fizičar. Vanredni profesor primenjene matematike bio je od 1909. do 1920. godine (osim 1914—1918), dok je kao redovni profesor nebeske mehanike radio od 1920. do 1955. (osim 1941—1945) na Univerzitetu u Beogradu. Bio je dekan Filozofskog fakulteta školske 1926/27, pionir u raketnom inženjerstvu, potpredsednik SANU u tri mandata počev od 1948, direktor Astronomske opservatorije u Beogradu od 1948. do 1951, član i reosnivač Komisije 7 za nebesku mehaniku Međunarodne astronomske unije od 1948. do 1953. itd. Milanković je dao dva fundamentalna doprinosa nauci. Prvi doprinos je „Kanon osunčavanja Zemlje” koji karakteriše sve planete Sunčevog sistema. Drugi doprinos je teorijsko objašnjenje Zemljinih dugotrajnih klimatskih promena uzrokovanih astronomskim promenama njenog položaja u odnosu na Sunce; danas poznato kao Milankovićevi ciklusi. Ovo objašnjava pojavu ledenih doba tokom geološke prošlosti Zemlje, kao i klimatske promene na Zemlji koje se mogu očekivati u budućnosti. Milutin Milanković je osnovao planetarnu klimatologiju izračunavanjem temperaturskih uslova u gornjim slojevima Zemljine atmosfere, kao i temperaturske uslove na planetama unutrašnjeg Sunčevog sistema (Merkuru, Veneri i Marsu), te Zemljinom prirodnom satelitu — Mesecu. Pored toga, Milanković se u geofizici smatra koautorom teorije tektonskih ploča, i to sa svojim radom Pomeranje Zemljinih obrtnih polova. Milanković je kao autor ili koautor registrovao osam patenata, koje je u periodu 1905—1933. podnosio u različitim državama. Tokom profesorske karijere ostao je veran svom prvom životnom pozivu — građevinarstvu, pa je radio kao konstruktor, statičar i supervizor na celom nizu građevinskih objekata od armiranog betona širom Jugoslavije. Tako je i većina patenata vezana za ovu oblast. Detinjstvo Rodna kuća Milutina Milankovića u Dalju Milutin Milanković je rođen u selu Dalj, na desnoj obali Dunava, u Austrougarskom carstvu. Milutin i njegova sestra bliznakinja Milena, bili su najstariji od sedmoro dece.[1] Njihov otac Milan bio je imućan zemljoradnik i trgovac kao i lokalni političar, ali je umro mlad — kada je Milutinu bilo svega 8 godina.[2] Milankovići su bila stara i ugledna porodica u kojoj je i ranije bilo znamenitih ličnosti. Među njima, Milutin je u svojim Uspomenama (autobiografija) posebno govorio o Urošu Milankoviću (1780—1849), lokalnom prosvetitelju, prirodnom filozofu i realisti koji se borio protiv sujevernih stavova seljaka i konzervativnih lokalnih plemića, te imao zapažene rasprave na nemačkom i srpskom jeziku objavljene u delima Organizam sveta, Organizam vasione, Prosveta čoveka, Zastava slobode i pravde i Ogledalo istine. Umro je 1849. godine za vreme građanskog rata u Austrijskom carstvu. Milutinova trojica braće umrla su od tuberkuloze još kao deca. Nakon očeve smrti, majka Jelisaveta (devojačko Maučević), baka i ujak Vasilije Vasa Maučević, tada su se starali o deci. Međutim, staranje o Milutinu je preuzeo — u najvećoj meri — njegov ujak Vasa, koji ga je tokom većeg dela života pomagao i savetovao.[3] Obrazovanje Osnovna škola Zbog osetljivog zdravlja, Milutin je stekao osnovno obrazovanje kod kuće, učeći od guvernanti i privatnih učitelja.[3] U desetoj godini (početkom oktobra 1889), preselio se u obližnji Osijek kod drugog ujaka, Paje Maučevića, gde je po prvi put pošao u javnu školu. Srednja škola Dvanaestogodišnji Milutin Milanković u đačkim danima (cca 1890. godine) U Milutinovo vreme postojale su dve vrste gimnazija: klasična i realna gimnazija. Realna gimnazija je pripremala učenike za studije tehnike i poljoprivrede, pa je tako Milutin 1889. godine započeo svoje srednjoškolsko obrazovanje u Realnoj gimnaziji u Osijeku.[4] Kada je krenuo u javnu školu, uvideo je nedostatke koje je imalo njegovo dotadašnje privatno obrazovanje. Ostala deca su bila bolja od njega u čitanju, pisanju i računanju. Međutim, Milutin je ubrzo sustigao vršnjake i postao najbolji učenik. Svedočanstvo o završenoj realnoj gimnaziji dobio je 29. maja 1896. godine. Posle završetka gimnazije i položenog maturskog ispita, Milanković je sa grupom maturanata otputovao na đački izlet u Srbiju. Tada je pored Beograda posetio i druga mesta širom Srbije, a jedan deo puta od Kragujevca do Stalaća prešao je pešice.[5] Studije Milutin se dugo premišljao šta da upiše u Beču. Presudan uticaj je imao njegov profesor matematike na osječkoj realci, Vladimir Verićak.[6] U početku je želeo da studira elektrotehniku, ali tog odseka na Visokoj tehničkoj školi u Beču nije bilo. Zato se na nagovor profesora Verićaka Milutin na kraju opredelio za studiranje građevine.[7] Oktobra 1896. godine, u 17. godini, Milutin odlazi na studije u Beč koje uspešno završava 1902. godine, s najboljim ocenama. Milutin je kasnije o svojim studijama u Uspomenama napisao: „Profesor Emanuel Čuber nas je učio matematici... Svaka njegova rečenica bila je majstorsko delo stroge logike, bez ijedne suvišne reči, bez ijedne omaške.”[8] Nakon odsluženog obaveznog vojnog roka, Milutin pozajmljuje novac od ujaka Vase kako bi nastavio školovanje na doktorskim studijama. On se tada usmerio na rešavanje jednog veoma složenog i tada aktuelnog pitanja iz domena primene statičkih metoda na konstrukciji modularnih armiranobetonskih mostova.[9] Doktorski ispit Milanković je položio u 25. godini, 12. decembra 1904. na Visokoj tehničkoj školi u Beču, i to raspravom pod nazivom Teorija linija pritiska (nem. Beitrag zur Theorie der Druck-kurven).[10] Doktorat je položio pred komisijom u kojoj su bila četiri člana: Johan Brik (predsednik komisije), Ludvig fon Tetmajer (rektor), Jozef Finger (profesor racionalne mehanike) i Emanuel Čuber.[11] Srednje doba Građevinski inženjer Milutin Milanković kao student u Beču Početkom 1905. godine, na osnovu preporuke, Milanković je primljen u poznatu bečku građevinsku firmu barona Adolfa Pitela, gde je ubrzo zauzeo jedno od glavnih mesta u konstruktivnom birou.[12] Milankovićevo radno mesto se sastojalo u obavljanju najsloženijih proračuna statičke prirode kada je trebalo konstruisati nove objekte od armiranog betona. U to vreme, armirani beton bio je relativno nov građevinski materijal koji se počeo naglo koristiti u svim oblastima građevine. Milanković je jedan od prvih stručnjaka koji je u građevinarstvo uveo matematičko modelovanje, napustivši dotadašnji geometrijski (grafički) metod projektovanja. Nakon manje od godinu dana po zaposlenju, Milanković se našao pred problemom projektovanja velikog magacina i fabričke hale od armiranog betona. Složenost tih projekata sastojala se u tome što nisu postojale matematičke formule na osnovu kojih bi se mogle odrediti dimenzije armaturnih greda i nosećih ploča. Tada je Milanković, uveren u svoju doktorsku tezu odnosno u validnost opšte teorije elastičnosti, strpljivo radio na proračunavanju koje će objaviti u stručnom časopisu i patentirati pod nazivom Prilog teoriji armiranobetonskih nosača. Drugi rad na istu temu a na osnovu novih rezultata objavio je 1906. godine. Rezultat je bio posebno vidljiv na projektu armiranobetonskog akvedukta za hidrocentralu u Sebešu, u Erdelju, koji je uradio na početku svoje inženjerske karijere. Tokom pet godina koliko je proveo u bečkom preduzeću, Milanković je osim sebeškog akvedukta radio na sledećim objektima: projektovao je akvedukt u Semeringu i Pitenu, mostove u Kranju, Banhildi i Išli, zatim beogradske kanalizacije, te Krupovu fabriku metala u Berdorfu. Ostvario je šest odobrenih i štampanih patenata od velikog teorijskog i praktičnog značaja čime je stekao slavu istaknutog izumitelja, kao i finansijsku dobit. Milanković je radio kao građevinski inženjer u Beču sve do 1. oktobra 1909. godine, kada je prihvatio poziv za vanrednog profesora Beogradskog univerziteta — na Katedri primenjene matematike, u sklopu koje su bile racionalna i nebeska mehanika, kao i teorijska fizika.[13] Iako je imao veoma značajne radove koji su se ticali armiranog betona, mladi Milanković je ipak bio odlučio da se posveti fundamentalnim istraživanjima. 1910. godine postao je državljanin Kraljevine Srbije. Milankovićeva plata vanrednog profesora bila je deset puta manja od one koju je imao kao inženjer u Beču; stoga je nastavio da honorarno radi statičke proračune u građevinarstvu i kada se preselio u Srbiju. Milanković je prihvatio poziv svog školskog druga sa bečke Tehnike i vlasnika građevinske firme Petra Putnika da od armiranog betona izradi projekat mostova u rasponu od 30 m na stenovitim obalama na budućoj trasi pruge Niš—Knjaževac, u dolini Timoka. Milanković, kome se ova ideja veoma dopala, brzo je izradio statički proračun za sve mostove, a upravo njegovo rešenje bilo je glavni razlog da Srpske državne železnice — SDŽ dodele posao preduzeću Petra Putnika, koji je ubrzo započeo radove (1912. godine). Kao rezervni oficir, učestvovao je u Balkanskim ratovima. Bio je na dužnosti referenta za stranu korespondenciju u Štabu Dunavske divizije prvog poziva, a potom u Presbirou Vrhovne komande.[14] Osunčavanje planeta Kapetan-Mišino zdanje (levo) iz 1938. (u to doba, Filozofski fakultet, danas Rektorat BU; u zgradi pored bio je smešten „Novi univerzitet”, danas Filološki fakultet), u kome je profesor Milanković od 1909. do 1955. imao radni kabinet Milanković se od 1911. godine počeo zanimati za klimatologiju. Proučavajući naučne radove savremenog klimatologa Julijusa fon Hana, Milanković je uočio značajno pitanje koje će postati jedno od glavnih oblasti njegovog naučnog istraživanja: misterija ledenog doba. Ideju o mogućem uticaju astronomskih faktora na klimatske promene prvi put je u obzir uzeo astronom Džon Heršel (1792—1871); kasnije, ideju je utemeljio geolog Lujs Agaši (1807—1873). Uporedo s tim, bilo je još nekoliko pokušaja da se objasne klimatske promene uzrokovane astronomskim silama (najznačajnija od njih je teorija koju je postavio Džejms Krol 1870-ih).[15][16] Milanković je takođe proučavao radove Žozefa Ademara i Džejmsa Krola, čije su pionirske teorije o astronomskom poreklu ledenog doba zvanično odbačene od njihovih savremenika. U to doba, klimatolozi i geolozi imali su preovlađujući stav da ledeno doba nastaje pod uticajem okeana-vulkana. Iako su imali pouzdane geološke podatke o prostiranju glacijacije na Alpima, klimatolozi i geolozi ipak nisu mogli da otkriju osnovne uzroke, pogotovo zbog toga što su promenljive vrednosti osunčavanja na Zemlji tokom prethodnih doba bile van domašaja ovih nauka.[17] Međutim, Milanković je odlučio da prati njihov put i pokuša ispravno da izračuna magnitude takvih promena. On je tražio rešenje ovog složenog problema u oblasti sferne geometrije, nebeske mehanike i teorijske fizike. Počeo je da radi na proučavanjima 1912. godine, i to nakon što je uočio da je: „... meteorologija ništa drugo nego prikupljanje brojnih empirijskih nalaza, većinom numeričkih podataka sa korišćenjem fizike u tragovima da se one objasne... Napredna matematika nema ulogu u ovoj nauci...” Njegov prvi rad egzaktno opisuje sadašnju klimu na Zemlji i kako Sunčevi zraci određuju temperaturu na površini Zemlje nakon prolaska kroz atmosferu. Prvi rad na ovu temu štampao je pod nazivom Prilog teoriji matematske klime u Beogradu, 5. aprila 1912. godine.[18] Njegov sledeći rad na istu temu objavljen je pod nazivom O rasporedu sunčeve radijacije na površini Zemlje, 5. juna 1913. godine.[19] Ispravno je izračunao intenzitet osunčavanja i unapredio matematičku teoriju opisujući klimatske zone, odnosno izvršio je proračun osunčavanja za pojedine uporednike od polutara (0°) do Zemljinih obrtnih polova (90°).[20] Njegov glavni cilj je bila izgradnja jedne integralne matematičke teorije koja će povezati toplotne uslove na planetama s njihovim kretanjem oko Sunca. Milanković je o tome napisao: „... takva teorija će biti sposobna da nas odvede više od samog direktnog posmatranja, ne samo u vasioni, već i u vremenu... Biće moguće rekonstruisati Zemljinu klimu i njeno predviđanje, ali daće nam i prve pouzdane podatke o klimatskim uslovima na drugim planetama.” Nakon toga, počeo je da traži matematički model kosmičkog mehanizma kako bi objasnio Zemljinu klimatsku i geološku prošlost. Objavio je rad na tu temu 1914. godine, pod nazivom O pitanju astronomskih teorija ledenih doba. Međutim, kosmički mehanizam nije bio lak problem i Milankoviću će trebati više od dve decenije za usavršavanje ove teorije. U isto vreme izbila je Julska kriza između Austrougarske i Srbije, koja će dovesti do Velikog rata. Milanković se 14. juna 1914. godine oženio sa Hristinom Topuzović, rodom iz Šapca, nakon čega odlaze na svadbeno putovanje u njegovo rodno selo Dalj. Kako je u to vreme bio državljanin Srbije sa kojom je Austrougarska u ratnom stanju, Milanković je uhapšen. Zatvoren je u jednu staru žandarmerijsku kasarnu, a potom prebačen u logor Nežider na Balatonskom jezeru. Opisao je svoj prvi dan u zatvoru sledećim rečima: „ Iza mene su se zatvorila teška gvozdena vrata... Sedoh na krevet, obazrah se oko sebe i počeh da mislim o svom novom društvenom položaju... U mom ručnom koferu koji sam poneo sa sobom nalazili su se moji već štampani ili tek započeti radovi o mome kosmičkom problemu; tu je bilo i čiste hartije. Počeh da prelistavam te spise, uzeh u ruke svoje verno pero, stadoh da pišem i računam... Posle ponoći se obazrah po sobici, zapitah se de se nalazim. Izgledala mi je kao prenoćište na mome putovanju po vasioni. ” Tabela srednjih godišnjih temperatura Marsa objavljena u Milankovićevom delu Ispitivanje planete Mars 1916. godine; ova tabela je kasnije, 1920. godine, publikovana za svetsku naučnu javnost u Parizu; ovim radom, Milanković je teorijskim putem ukazao na izuzetno surove klimatske prilike koje onemogućavaju postojanje vode u tečnom stanju na ovoj planeti Njegova supruga Hristina je otišla u Beč kako bi razgovarala sa Emanuelom Čuberom, koji je bio njegov mentor i dobar prijatelj. Koristeći društvene veze, profesor Čuber je izdejstvovao Milankovićevo oslobađanje iz logora i dozvolu da Milanković zarobljeništvo provede u Budimpešti s pravom na rad. Nakon šest meseci provedenih u logoru, Milanković je decembra 1914. godine stigao u Budimpeštu, gde je bio u obavezi da se javlja u policijsku stanicu jednom nedeljno. Ubrzo nakon dolaska, Milanković se sreo sa direktorom biblioteke Mađarske akademije nauke, Kolomanom fon Silijem, koji je kao matematičar oberučke prihvatio Milankovića i omogućio mu da nesmetano radi kako u biblioteci tako i u Centralnom meteorološkom institutu. Milanković je proveo u Budimpešti četiri godine, skoro ceo rat. Nastavio je veoma studiozno raditi na teoriji klima. Koristeći matematički metod radio je na proučavanju sadašnjih klima planeta unutrašnjeg Sunčevog sistema. 1916. godine objavio je rad pod nazivom Ispitivanje klime planete Mars.[21][22] Milanković je izračunao da je prosečna temperatura u donjim slojevima Marsove atmosfere −45 °C (−49 °F) i prosečna temperatura tla −17 °C (1 °F). Takođe je zaključio sledeće: „Ova velika razlika između temperature tla i donjeg sloja atmosfere nije neočekivana. Velika prozirnost Marsove atmosfere za Sunčeve zrake čini da je Marsova klima veoma slična visinskoj klimi naše Zemlje, koja se takođe odlikuje visokom temperaturama tla, a niskim temperaturama vazduha.” Danas se pouzdano zna da je prosečna temperatura tla −55 °C (−67 °F),[23] ali da se temperature tla i vazduha generalno razlikuju.[24] U svakom slučaju, Milanković je teorijski dokazao da Mars ima veoma ekstremnu klimu.[25] Pored razmatranja Marsa, Milutin Milanković se bavio i klimatskim uslovima koji vladaju na Merkuru i na Veneri. Posebno su značajni proračuni temperaturnih uslova na Mesecu. Milanković je znao da jedan dan na Mesecu traje 15 zemaljskih dana, te da toliko iznosi i dužina noći. Potom je izračunao da temperatura tla na dnevnoj strani Meseca u podne dostiže +100,5 °C. Takođe, izračunao je da temperatura tokom ranog jutra na Mesecu — tačnije, pre pojave Sunca nad horizontom — iznosi −58 °C. Danas se pouzdano zna da dnevna temperatura na Mesečevoj površini dostiže +108 °C, a noćna pada i do −153 °C. U Pešti se 1915. godine rodio Milutinov sin Vasilije (1915—2003), koji je umro u Australiji i od koga Milanković ima dvoje unuka i praunuke.[26] Nakon rata, Milanković se sa porodicom vratio u Beograd, 19. marta 1919. godine. Nastavio je karijeru na Univerzitetu; izabran je za redovnog profesora nebeske mehanike na Filozofskom fakultetu, a Ukaz o postavljenju potpisan je 29. septembra 1919. godine. Milanković je od 1912. do 1917. godine objavio sedam naučnih radova o matematičkoj teoriji klime, kako za Zemlju tako i za druge planete. Formulisao je precizan numerički klimatološki model s kapacitetom za rekonstrukciju prošlosti kao i za predviđanje budućnosti, te je ustanovio astronomsku teoriju klime kao generalnu matematičku teoriju osunčavanja. Kada su najvažniji problemi u teoriji bili rešeni i osnove za budući rad postavljene, Milanković je završio knjigu koja je 1920. godine objavljena u Parizu na francuskom jeziku, pod nazivom Matematička teorija toplotnog fenomena uzrokovana sunčevim zračenjem (franc. Théorie mathématique des phénomènes thermiques produits par la radiation solaire). Ubrzo nakon objavljivanja, meteorolozi su ovaj rad prepoznali kao značajan doprinos proučavanju sadašnjih klimatskih uslova. Egzaktni radovi Levisa Frija Ričardsona iz 1922. godine, kao i Vilhelma Bjerknesa iz 1924. godine, predstavljaju temelj i pionirske radove iz kojih će se razviti savremena numerička prognoza vremena. Za dopisnog člana Srpske akademije nauka Milanković je izabran 1920. godine. O brzini svetlosti Milanković je objavio dva rada o relativnosti. Prvi rad „O teoriji Majkelsonovog eksperimenta` publikovao je 1912. godine. Radio je istraživanja o ovoj teoriji i 1924. godine. U stvari, njegovi radovi bili su o specijalnoj teoriji relativnosti i oba rada na temu Majkelsonovog eksperimenta (sada poznatom kao Majkelson—Morlijev eksperiment) koji je dao snažan dokaz protiv teorije etra. U svetlu Majkelsonovog eksperimenta diskutovao je o validnosti drugog postulata Specijalne teorije relativnosti, da je brzina svetlosti ista u svim referentnim sistemima.[27] Do svoje smrti, ostao je ubeđen da brzina svetlosti u kosmičkim prostorima ne može biti konstantna.[28] Zanimljivo da se na prelazu iz 20. u 21. vek u nauci sve više navodi pojam varijabilna (promenljiva) brzina svetlosti.[29] Revizija julijanskog kalendara Milutin Milanković je 1923. godine predložio reformu julijanskog kalendara. Suština njegovog predloga je da su prestupne sve godine deljive sa 4, ne uključujući sekularne godine osim ako pri deljenju sa 900 daju ostatak ili 200 ili 600 (2000, 2400, 2900, 3300, 3800... su sekularne ali ipak prestupne). Prema gregorijanskom kalendaru, prestupne godine su sve one koje su deljive sa 4 ne uključujući sekularne godine osim ako pri deljenju sa 400 daju ostatak 0 (400, 800, 1200, 1600, 2000, 2400, 2800, 3200, 3600, 4000... su sekularne ali ipak prestupne). U maju 1923. godine, Pravoslavna crkva je u načelu prihvatila kalendar;[30][31] uklonjena je razlika od 13 dana (1—13. oktobar 1923) nastala od Nikejskog sabora do 20. veka, a takođe brojne crkve su usvojile izmenjeni algoritam prestupnih godina. Datumi Uskrsa i srodnih praznika i dalje bi se obračunavali po obrascu julijanskog kalendara. U to vreme, Milanković je izražavao sumnju da period obrtanja Zemlje možda nije konstantan; međutim, ovo je bilo nemoguće dokazati i potvrditi sve do pojave kvarcnih i atomskih časovnika.[32] Varijacije u periodu obrtanja Zemlje su glavni uzrok netačnosti kako gregorijanskog tako i revidiranog julijanskog (Milankovićevog) kalendara kada se posmatraju ogromni vremenski rasponi....

Prikaži sve...
1,690RSD
forward
forward
Detaljnije

Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju! Astronomska teorija klimatskih promena i druge rasprave Milutin Milanković Milutin Milanković( Dalj 1879-1958., Beograd), uz Nikolu Teslu, svakako najznačajniji srpski naučnik, dao je dva fundamentalna doprinosa svetskoj nauci. Prvi je „Kanon osunčavanja zemlje“, koji karakteriše sve planete Sunčevog sistema. To je ujedno i jedan od šest tomova ovog dragocenog izdanja Milankovićevih Izabranih dela. Drugi doprinos svetskoj nauci ovog našeg naučnika je njegovo teorijsko objašnjenje zemljinih dugotrajnih klimatskih promena koje je posledica astronomskih promena položaja Zemlje u odnosu na Sunce. Danas se oni i kod nas i u svetu nazivaju Milankovićevi ciklusi Time su objašnjene pojave ledenih doba u prošlosti, ali i klimatske promene koje se mogu očekivati u budućnosti. On je takođe osnovao planetarnu klimatologiju, a svojim delom „Pomeranjem zemljinih polova rotacije“, u oblasti geofizike, smatra se ko-autorom teorije tektonskih ploča. Milutin Milanković je bio matematičar, astronom, klimatolog, geofizičar, građevinski inženjer, doktor tehničkih nauka, redovni profesor nebeske mehanike na Univerzitetu u Beogradu, pionir raketnog inženjerstva, potpredsednik SANU u tri mandata, direktor beogradske Astronomske opservatorije, izuzetan popularizator nauke. U njegovu čast, po jedan krater na Mesecu, kao i na Marsu nose ime Milutina Milankovića. Njegovo ime nosi i i jedan asteroid. Evropsko geofizičko društvo od 1993. godine kao posebno svoje priznanje dodeljuje medalju koja takođe nosi ime Milutina Milankovića. Ovo Zavodovo izdanje Izabranih dela predstavlja izuzetnu priliku da se naša javnost upozna sa velikim delom jednog od najznačajnijih Srba svih vremena Milutin Milanković (Dalj, 28. maj 1879 — Beograd, 12. decembar 1958) bio je srpski matematičar, astronom, klimatolog, geofizičar, građevinski inženjer, doktor tehničkih nauka, kao i popularizator nauke i fizičar. Vanredni profesor primenjene matematike bio je od 1909. do 1920. godine (osim 1914—1918), dok je kao redovni profesor nebeske mehanike radio od 1920. do 1955. (osim 1941—1945) na Univerzitetu u Beogradu. Bio je dekan Filozofskog fakulteta školske 1926/27, pionir u raketnom inženjerstvu, potpredsednik SANU u tri mandata počev od 1948, direktor Astronomske opservatorije u Beogradu od 1948. do 1951, član i reosnivač Komisije 7 za nebesku mehaniku Međunarodne astronomske unije od 1948. do 1953. itd. Milanković je dao dva fundamentalna doprinosa nauci. Prvi doprinos je „Kanon osunčavanja Zemlje” koji karakteriše sve planete Sunčevog sistema. Drugi doprinos je teorijsko objašnjenje Zemljinih dugotrajnih klimatskih promena uzrokovanih astronomskim promenama njenog položaja u odnosu na Sunce; danas poznato kao Milankovićevi ciklusi. Ovo objašnjava pojavu ledenih doba tokom geološke prošlosti Zemlje, kao i klimatske promene na Zemlji koje se mogu očekivati u budućnosti. Milutin Milanković je osnovao planetarnu klimatologiju izračunavanjem temperaturskih uslova u gornjim slojevima Zemljine atmosfere, kao i temperaturske uslove na planetama unutrašnjeg Sunčevog sistema (Merkuru, Veneri i Marsu), te Zemljinom prirodnom satelitu — Mesecu. Pored toga, Milanković se u geofizici smatra koautorom teorije tektonskih ploča, i to sa svojim radom Pomeranje Zemljinih obrtnih polova. Milanković je kao autor ili koautor registrovao osam patenata, koje je u periodu 1905—1933. podnosio u različitim državama. Tokom profesorske karijere ostao je veran svom prvom životnom pozivu — građevinarstvu, pa je radio kao konstruktor, statičar i supervizor na celom nizu građevinskih objekata od armiranog betona širom Jugoslavije. Tako je i većina patenata vezana za ovu oblast. Detinjstvo Rodna kuća Milutina Milankovića u Dalju Milutin Milanković je rođen u selu Dalj, na desnoj obali Dunava, u Austrougarskom carstvu. Milutin i njegova sestra bliznakinja Milena, bili su najstariji od sedmoro dece.[1] Njihov otac Milan bio je imućan zemljoradnik i trgovac kao i lokalni političar, ali je umro mlad — kada je Milutinu bilo svega 8 godina.[2] Milankovići su bila stara i ugledna porodica u kojoj je i ranije bilo znamenitih ličnosti. Među njima, Milutin je u svojim Uspomenama (autobiografija) posebno govorio o Urošu Milankoviću (1780—1849), lokalnom prosvetitelju, prirodnom filozofu i realisti koji se borio protiv sujevernih stavova seljaka i konzervativnih lokalnih plemića, te imao zapažene rasprave na nemačkom i srpskom jeziku objavljene u delima Organizam sveta, Organizam vasione, Prosveta čoveka, Zastava slobode i pravde i Ogledalo istine. Umro je 1849. godine za vreme građanskog rata u Austrijskom carstvu. Milutinova trojica braće umrla su od tuberkuloze još kao deca. Nakon očeve smrti, majka Jelisaveta (devojačko Maučević), baka i ujak Vasilije Vasa Maučević, tada su se starali o deci. Međutim, staranje o Milutinu je preuzeo — u najvećoj meri — njegov ujak Vasa, koji ga je tokom većeg dela života pomagao i savetovao.[3] Obrazovanje Osnovna škola Zbog osetljivog zdravlja, Milutin je stekao osnovno obrazovanje kod kuće, učeći od guvernanti i privatnih učitelja.[3] U desetoj godini (početkom oktobra 1889), preselio se u obližnji Osijek kod drugog ujaka, Paje Maučevića, gde je po prvi put pošao u javnu školu. Srednja škola Dvanaestogodišnji Milutin Milanković u đačkim danima (cca 1890. godine) U Milutinovo vreme postojale su dve vrste gimnazija: klasična i realna gimnazija. Realna gimnazija je pripremala učenike za studije tehnike i poljoprivrede, pa je tako Milutin 1889. godine započeo svoje srednjoškolsko obrazovanje u Realnoj gimnaziji u Osijeku.[4] Kada je krenuo u javnu školu, uvideo je nedostatke koje je imalo njegovo dotadašnje privatno obrazovanje. Ostala deca su bila bolja od njega u čitanju, pisanju i računanju. Međutim, Milutin je ubrzo sustigao vršnjake i postao najbolji učenik. Svedočanstvo o završenoj realnoj gimnaziji dobio je 29. maja 1896. godine. Posle završetka gimnazije i položenog maturskog ispita, Milanković je sa grupom maturanata otputovao na đački izlet u Srbiju. Tada je pored Beograda posetio i druga mesta širom Srbije, a jedan deo puta od Kragujevca do Stalaća prešao je pešice.[5] Studije Milutin se dugo premišljao šta da upiše u Beču. Presudan uticaj je imao njegov profesor matematike na osječkoj realci, Vladimir Verićak.[6] U početku je želeo da studira elektrotehniku, ali tog odseka na Visokoj tehničkoj školi u Beču nije bilo. Zato se na nagovor profesora Verićaka Milutin na kraju opredelio za studiranje građevine.[7] Oktobra 1896. godine, u 17. godini, Milutin odlazi na studije u Beč koje uspešno završava 1902. godine, s najboljim ocenama. Milutin je kasnije o svojim studijama u Uspomenama napisao: „Profesor Emanuel Čuber nas je učio matematici... Svaka njegova rečenica bila je majstorsko delo stroge logike, bez ijedne suvišne reči, bez ijedne omaške.”[8] Nakon odsluženog obaveznog vojnog roka, Milutin pozajmljuje novac od ujaka Vase kako bi nastavio školovanje na doktorskim studijama. On se tada usmerio na rešavanje jednog veoma složenog i tada aktuelnog pitanja iz domena primene statičkih metoda na konstrukciji modularnih armiranobetonskih mostova.[9] Doktorski ispit Milanković je položio u 25. godini, 12. decembra 1904. na Visokoj tehničkoj školi u Beču, i to raspravom pod nazivom Teorija linija pritiska (nem. Beitrag zur Theorie der Druck-kurven).[10] Doktorat je položio pred komisijom u kojoj su bila četiri člana: Johan Brik (predsednik komisije), Ludvig fon Tetmajer (rektor), Jozef Finger (profesor racionalne mehanike) i Emanuel Čuber.[11] Srednje doba Građevinski inženjer Milutin Milanković kao student u Beču Početkom 1905. godine, na osnovu preporuke, Milanković je primljen u poznatu bečku građevinsku firmu barona Adolfa Pitela, gde je ubrzo zauzeo jedno od glavnih mesta u konstruktivnom birou.[12] Milankovićevo radno mesto se sastojalo u obavljanju najsloženijih proračuna statičke prirode kada je trebalo konstruisati nove objekte od armiranog betona. U to vreme, armirani beton bio je relativno nov građevinski materijal koji se počeo naglo koristiti u svim oblastima građevine. Milanković je jedan od prvih stručnjaka koji je u građevinarstvo uveo matematičko modelovanje, napustivši dotadašnji geometrijski (grafički) metod projektovanja. Nakon manje od godinu dana po zaposlenju, Milanković se našao pred problemom projektovanja velikog magacina i fabričke hale od armiranog betona. Složenost tih projekata sastojala se u tome što nisu postojale matematičke formule na osnovu kojih bi se mogle odrediti dimenzije armaturnih greda i nosećih ploča. Tada je Milanković, uveren u svoju doktorsku tezu odnosno u validnost opšte teorije elastičnosti, strpljivo radio na proračunavanju koje će objaviti u stručnom časopisu i patentirati pod nazivom Prilog teoriji armiranobetonskih nosača. Drugi rad na istu temu a na osnovu novih rezultata objavio je 1906. godine. Rezultat je bio posebno vidljiv na projektu armiranobetonskog akvedukta za hidrocentralu u Sebešu, u Erdelju, koji je uradio na početku svoje inženjerske karijere. Tokom pet godina koliko je proveo u bečkom preduzeću, Milanković je osim sebeškog akvedukta radio na sledećim objektima: projektovao je akvedukt u Semeringu i Pitenu, mostove u Kranju, Banhildi i Išli, zatim beogradske kanalizacije, te Krupovu fabriku metala u Berdorfu. Ostvario je šest odobrenih i štampanih patenata od velikog teorijskog i praktičnog značaja čime je stekao slavu istaknutog izumitelja, kao i finansijsku dobit. Milanković je radio kao građevinski inženjer u Beču sve do 1. oktobra 1909. godine, kada je prihvatio poziv za vanrednog profesora Beogradskog univerziteta — na Katedri primenjene matematike, u sklopu koje su bile racionalna i nebeska mehanika, kao i teorijska fizika.[13] Iako je imao veoma značajne radove koji su se ticali armiranog betona, mladi Milanković je ipak bio odlučio da se posveti fundamentalnim istraživanjima. 1910. godine postao je državljanin Kraljevine Srbije. Milankovićeva plata vanrednog profesora bila je deset puta manja od one koju je imao kao inženjer u Beču; stoga je nastavio da honorarno radi statičke proračune u građevinarstvu i kada se preselio u Srbiju. Milanković je prihvatio poziv svog školskog druga sa bečke Tehnike i vlasnika građevinske firme Petra Putnika da od armiranog betona izradi projekat mostova u rasponu od 30 m na stenovitim obalama na budućoj trasi pruge Niš—Knjaževac, u dolini Timoka. Milanković, kome se ova ideja veoma dopala, brzo je izradio statički proračun za sve mostove, a upravo njegovo rešenje bilo je glavni razlog da Srpske državne železnice — SDŽ dodele posao preduzeću Petra Putnika, koji je ubrzo započeo radove (1912. godine). Kao rezervni oficir, učestvovao je u Balkanskim ratovima. Bio je na dužnosti referenta za stranu korespondenciju u Štabu Dunavske divizije prvog poziva, a potom u Presbirou Vrhovne komande.[14] Osunčavanje planeta Kapetan-Mišino zdanje (levo) iz 1938. (u to doba, Filozofski fakultet, danas Rektorat BU; u zgradi pored bio je smešten „Novi univerzitet”, danas Filološki fakultet), u kome je profesor Milanković od 1909. do 1955. imao radni kabinet Milanković se od 1911. godine počeo zanimati za klimatologiju. Proučavajući naučne radove savremenog klimatologa Julijusa fon Hana, Milanković je uočio značajno pitanje koje će postati jedno od glavnih oblasti njegovog naučnog istraživanja: misterija ledenog doba. Ideju o mogućem uticaju astronomskih faktora na klimatske promene prvi put je u obzir uzeo astronom Džon Heršel (1792—1871); kasnije, ideju je utemeljio geolog Lujs Agaši (1807—1873). Uporedo s tim, bilo je još nekoliko pokušaja da se objasne klimatske promene uzrokovane astronomskim silama (najznačajnija od njih je teorija koju je postavio Džejms Krol 1870-ih).[15][16] Milanković je takođe proučavao radove Žozefa Ademara i Džejmsa Krola, čije su pionirske teorije o astronomskom poreklu ledenog doba zvanično odbačene od njihovih savremenika. U to doba, klimatolozi i geolozi imali su preovlađujući stav da ledeno doba nastaje pod uticajem okeana-vulkana. Iako su imali pouzdane geološke podatke o prostiranju glacijacije na Alpima, klimatolozi i geolozi ipak nisu mogli da otkriju osnovne uzroke, pogotovo zbog toga što su promenljive vrednosti osunčavanja na Zemlji tokom prethodnih doba bile van domašaja ovih nauka.[17] Međutim, Milanković je odlučio da prati njihov put i pokuša ispravno da izračuna magnitude takvih promena. On je tražio rešenje ovog složenog problema u oblasti sferne geometrije, nebeske mehanike i teorijske fizike. Počeo je da radi na proučavanjima 1912. godine, i to nakon što je uočio da je: „... meteorologija ništa drugo nego prikupljanje brojnih empirijskih nalaza, većinom numeričkih podataka sa korišćenjem fizike u tragovima da se one objasne... Napredna matematika nema ulogu u ovoj nauci...” Njegov prvi rad egzaktno opisuje sadašnju klimu na Zemlji i kako Sunčevi zraci određuju temperaturu na površini Zemlje nakon prolaska kroz atmosferu. Prvi rad na ovu temu štampao je pod nazivom Prilog teoriji matematske klime u Beogradu, 5. aprila 1912. godine.[18] Njegov sledeći rad na istu temu objavljen je pod nazivom O rasporedu sunčeve radijacije na površini Zemlje, 5. juna 1913. godine.[19] Ispravno je izračunao intenzitet osunčavanja i unapredio matematičku teoriju opisujući klimatske zone, odnosno izvršio je proračun osunčavanja za pojedine uporednike od polutara (0°) do Zemljinih obrtnih polova (90°).[20] Njegov glavni cilj je bila izgradnja jedne integralne matematičke teorije koja će povezati toplotne uslove na planetama s njihovim kretanjem oko Sunca. Milanković je o tome napisao: „... takva teorija će biti sposobna da nas odvede više od samog direktnog posmatranja, ne samo u vasioni, već i u vremenu... Biće moguće rekonstruisati Zemljinu klimu i njeno predviđanje, ali daće nam i prve pouzdane podatke o klimatskim uslovima na drugim planetama.” Nakon toga, počeo je da traži matematički model kosmičkog mehanizma kako bi objasnio Zemljinu klimatsku i geološku prošlost. Objavio je rad na tu temu 1914. godine, pod nazivom O pitanju astronomskih teorija ledenih doba. Međutim, kosmički mehanizam nije bio lak problem i Milankoviću će trebati više od dve decenije za usavršavanje ove teorije. U isto vreme izbila je Julska kriza između Austrougarske i Srbije, koja će dovesti do Velikog rata. Milanković se 14. juna 1914. godine oženio sa Hristinom Topuzović, rodom iz Šapca, nakon čega odlaze na svadbeno putovanje u njegovo rodno selo Dalj. Kako je u to vreme bio državljanin Srbije sa kojom je Austrougarska u ratnom stanju, Milanković je uhapšen. Zatvoren je u jednu staru žandarmerijsku kasarnu, a potom prebačen u logor Nežider na Balatonskom jezeru. Opisao je svoj prvi dan u zatvoru sledećim rečima: „ Iza mene su se zatvorila teška gvozdena vrata... Sedoh na krevet, obazrah se oko sebe i počeh da mislim o svom novom društvenom položaju... U mom ručnom koferu koji sam poneo sa sobom nalazili su se moji već štampani ili tek započeti radovi o mome kosmičkom problemu; tu je bilo i čiste hartije. Počeh da prelistavam te spise, uzeh u ruke svoje verno pero, stadoh da pišem i računam... Posle ponoći se obazrah po sobici, zapitah se de se nalazim. Izgledala mi je kao prenoćište na mome putovanju po vasioni. ” Tabela srednjih godišnjih temperatura Marsa objavljena u Milankovićevom delu Ispitivanje planete Mars 1916. godine; ova tabela je kasnije, 1920. godine, publikovana za svetsku naučnu javnost u Parizu; ovim radom, Milanković je teorijskim putem ukazao na izuzetno surove klimatske prilike koje onemogućavaju postojanje vode u tečnom stanju na ovoj planeti Njegova supruga Hristina je otišla u Beč kako bi razgovarala sa Emanuelom Čuberom, koji je bio njegov mentor i dobar prijatelj. Koristeći društvene veze, profesor Čuber je izdejstvovao Milankovićevo oslobađanje iz logora i dozvolu da Milanković zarobljeništvo provede u Budimpešti s pravom na rad. Nakon šest meseci provedenih u logoru, Milanković je decembra 1914. godine stigao u Budimpeštu, gde je bio u obavezi da se javlja u policijsku stanicu jednom nedeljno. Ubrzo nakon dolaska, Milanković se sreo sa direktorom biblioteke Mađarske akademije nauke, Kolomanom fon Silijem, koji je kao matematičar oberučke prihvatio Milankovića i omogućio mu da nesmetano radi kako u biblioteci tako i u Centralnom meteorološkom institutu. Milanković je proveo u Budimpešti četiri godine, skoro ceo rat. Nastavio je veoma studiozno raditi na teoriji klima. Koristeći matematički metod radio je na proučavanju sadašnjih klima planeta unutrašnjeg Sunčevog sistema. 1916. godine objavio je rad pod nazivom Ispitivanje klime planete Mars.[21][22] Milanković je izračunao da je prosečna temperatura u donjim slojevima Marsove atmosfere −45 °C (−49 °F) i prosečna temperatura tla −17 °C (1 °F). Takođe je zaključio sledeće: „Ova velika razlika između temperature tla i donjeg sloja atmosfere nije neočekivana. Velika prozirnost Marsove atmosfere za Sunčeve zrake čini da je Marsova klima veoma slična visinskoj klimi naše Zemlje, koja se takođe odlikuje visokom temperaturama tla, a niskim temperaturama vazduha.” Danas se pouzdano zna da je prosečna temperatura tla −55 °C (−67 °F),[23] ali da se temperature tla i vazduha generalno razlikuju.[24] U svakom slučaju, Milanković je teorijski dokazao da Mars ima veoma ekstremnu klimu.[25] Pored razmatranja Marsa, Milutin Milanković se bavio i klimatskim uslovima koji vladaju na Merkuru i na Veneri. Posebno su značajni proračuni temperaturnih uslova na Mesecu. Milanković je znao da jedan dan na Mesecu traje 15 zemaljskih dana, te da toliko iznosi i dužina noći. Potom je izračunao da temperatura tla na dnevnoj strani Meseca u podne dostiže +100,5 °C. Takođe, izračunao je da temperatura tokom ranog jutra na Mesecu — tačnije, pre pojave Sunca nad horizontom — iznosi −58 °C. Danas se pouzdano zna da dnevna temperatura na Mesečevoj površini dostiže +108 °C, a noćna pada i do −153 °C. U Pešti se 1915. godine rodio Milutinov sin Vasilije (1915—2003), koji je umro u Australiji i od koga Milanković ima dvoje unuka i praunuke.[26] Nakon rata, Milanković se sa porodicom vratio u Beograd, 19. marta 1919. godine. Nastavio je karijeru na Univerzitetu; izabran je za redovnog profesora nebeske mehanike na Filozofskom fakultetu, a Ukaz o postavljenju potpisan je 29. septembra 1919. godine. Milanković je od 1912. do 1917. godine objavio sedam naučnih radova o matematičkoj teoriji klime, kako za Zemlju tako i za druge planete. Formulisao je precizan numerički klimatološki model s kapacitetom za rekonstrukciju prošlosti kao i za predviđanje budućnosti, te je ustanovio astronomsku teoriju klime kao generalnu matematičku teoriju osunčavanja. Kada su najvažniji problemi u teoriji bili rešeni i osnove za budući rad postavljene, Milanković je završio knjigu koja je 1920. godine objavljena u Parizu na francuskom jeziku, pod nazivom Matematička teorija toplotnog fenomena uzrokovana sunčevim zračenjem (franc. Théorie mathématique des phénomènes thermiques produits par la radiation solaire). Ubrzo nakon objavljivanja, meteorolozi su ovaj rad prepoznali kao značajan doprinos proučavanju sadašnjih klimatskih uslova. Egzaktni radovi Levisa Frija Ričardsona iz 1922. godine, kao i Vilhelma Bjerknesa iz 1924. godine, predstavljaju temelj i pionirske radove iz kojih će se razviti savremena numerička prognoza vremena. Za dopisnog člana Srpske akademije nauka Milanković je izabran 1920. godine. O brzini svetlosti Milanković je objavio dva rada o relativnosti. Prvi rad „O teoriji Majkelsonovog eksperimenta` publikovao je 1912. godine. Radio je istraživanja o ovoj teoriji i 1924. godine. U stvari, njegovi radovi bili su o specijalnoj teoriji relativnosti i oba rada na temu Majkelsonovog eksperimenta (sada poznatom kao Majkelson—Morlijev eksperiment) koji je dao snažan dokaz protiv teorije etra. U svetlu Majkelsonovog eksperimenta diskutovao je o validnosti drugog postulata Specijalne teorije relativnosti, da je brzina svetlosti ista u svim referentnim sistemima.[27] Do svoje smrti, ostao je ubeđen da brzina svetlosti u kosmičkim prostorima ne može biti konstantna.[28] Zanimljivo da se na prelazu iz 20. u 21. vek u nauci sve više navodi pojam varijabilna (promenljiva) brzina svetlosti.[29] Revizija julijanskog kalendara Milutin Milanković je 1923. godine predložio reformu julijanskog kalendara. Suština njegovog predloga je da su prestupne sve godine deljive sa 4, ne uključujući sekularne godine osim ako pri deljenju sa 900 daju ostatak ili 200 ili 600 (2000, 2400, 2900, 3300, 3800... su sekularne ali ipak prestupne). Prema gregorijanskom kalendaru, prestupne godine su sve one koje su deljive sa 4 ne uključujući sekularne godine osim ako pri deljenju sa 400 daju ostatak 0 (400, 800, 1200, 1600, 2000, 2400, 2800, 3200, 3600, 4000... su sekularne ali ipak prestupne). U maju 1923. godine, Pravoslavna crkva je u načelu prihvatila kalendar;[30][31] uklonjena je razlika od 13 dana (1—13. oktobar 1923) nastala od Nikejskog sabora do 20. veka, a takođe brojne crkve su usvojile izmenjeni algoritam prestupnih godina. Datumi Uskrsa i srodnih praznika i dalje bi se obračunavali po obrascu julijanskog kalendara. U to vreme, Milanković je izražavao sumnju da period obrtanja Zemlje možda nije konstantan; međutim, ovo je bilo nemoguće dokazati i potvrditi sve do pojave kvarcnih i atomskih časovnika.[32] Varijacije u periodu obrtanja Zemlje su glavni uzrok netačnosti kako gregorijanskog tako i revidiranog julijanskog (Milankovićevog) kalendara kada se posmatraju ogromni vremenski rasponi....

Prikaži sve...
2,190RSD
forward
forward
Detaljnije
Nazad
Sačuvaj